Toán 7 Luyện tập chung trang 37 Giải Toán lớp 7 trang 37, 38 sách Kết nối tri thức - Tập 1
Giải bài tập Toán lớp 7 Luyện tập chung với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán 7 Tập 1 Kết nối tri thức với cuộc sống trang 37, 38. Qua đó, giúp các em ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán.
Giải Toán 7 chi tiết, còn giúp các em hệ thống lại toàn bộ kiến thức trọng tâm của Luyện tập chung Chương II: Số thực. Bên cạnh đó, cũng giúp thầy cô soạn giáo án cho học sinh của mình. Vậy mời thầy cô và các em cùng theo dõi bài viết dưới đây của Eballsviet.com:
Giải Toán 7 bài Luyện tập chung trang 37 Kết nối tri thức với cuộc sống
Giải Toán 7 Kết nối tri thức với cuộc sống trang 38 tập 1
Bài 2.19 trang 37 Toán 7 tập 1
Cho các phân số: \(\frac{17}{80} ; \frac{611}{125} ; \frac{133}{91} ; \frac{9}{8}\)
a) Phân số nào trong những phân số trên không viết được dưới dạng số thập phân hữu hạn?
b) Cho biết \(\sqrt{2}=1,414213562\), hãy so sánh phân số tìm được trong câu a) với
\(\sqrt{2}\)
Hướng dẫn giải:
- Các số thập phân chỉ gồm hữu hạn số sau dấu “,” được gọi là số thập phân hữu hạn.
- Các số thập phân vô hạn tuần hoàn có tính chất: Trong phần thập phân, bắt đầu từ một hàng nào đó, có một chữ số hay một cụm chữ số liền nhau xuất hiện liên tiếp mãi.
Gợi ý đáp án:
a) Ta có:
\(\frac{17}{80}=0,2125\)
\(\frac{611}{125}=4,888\)
\(\frac{133}{91}=1,(461538)\)
\(\frac{9}{8}=1,125\)
=> Số không viết được dưới dạng số thập phân hữu hạn là: \(\frac{133}{91}=1,(461538)\)
b) Ta có: \(\frac{133}{91}=1,(461538)\) mà
\(1,(461538)>1,414213562=>\frac{133}{91}>\sqrt{2}\)
Bài 2.20 trang 37 Toán 7 tập 1
a. Viết các phân số sau dưới dạng số thập phân vô hạn tuần hoàn (dùng dấu ngoặc để chỉ rõ chu kì):\(\frac{1}{9} ; \frac{1}{99}\). Em có nhận xét gì về kết quả nhận được?
b. Em hãy dự đoán dạng thập phân của \(\frac{1}{999}\)?
Hướng dẫn giải:
- Các số thập phân chỉ gồm hữu hạn số sau dấu “,” được gọi là số thập phân hữu hạn.
- Các số thập phân vô hạn tuần hoàn có tính chất: Trong phần thập phân, bắt đầu từ một hàng nào đó, có một chữ số hay một cụm chữ số liền nhau xuất hiện liên tiếp mãi.
Gợi ý đáp án:
a. Viết dạng thập phân vô hạn tuần hoàn:
\(\frac{1}{9}=0,(1)\)
\(\frac{1}{99}=0,(01)\)
Nhận xét: Với phân số có dạng \(\frac{1}{9 \ldots 9}\) thì dạng thập phân vô hạn tuần hoàn của nó sẽ là 0,(00..1) với n số 9 thì có n-1 số 0
b. Dự đoán dạng thập phân của \(\frac{1}{999}=0,(001)\)
Bài 2.21 trang 37 Toán 7 tập 1
Viết số \(\frac{5}{9}\) và
\(\frac{5}{9}\) dưới dạng số thập phân vô hạn tuần hoàn.
Hướng dẫn giải:
- Các số thập phân chỉ gồm hữu hạn số sau dấu “,” được gọi là số thập phân hữu hạn.
- Các số thập phân vô hạn tuần hoàn có tính chất: Trong phần thập phân, bắt đầu từ một hàng nào đó, có một chữ số hay một cụm chữ số liền nhau xuất hiện liên tiếp mãi.
Gợi ý đáp án:\(\begin{aligned}
&\frac{5}{9}=0,(5) \\
&\frac{5}{9}=0,(05)
\end{aligned}\)
Bài 2.22 trang 37 Toán 7 tập 1
Nam vẽ một phần trục số trên vở ô li và đánh dấu ba điểm A, B,C như sau:
a. Hãy cho biết hai điểm A,B biểu diễn những số thập phân nào?
b. Làm tròn số thập phân được biểu diễn bởi điểm C với độ chính xác 0,05.
Hướng dẫn giải:
- Các số thập phân chỉ gồm hữu hạn số sau dấu “,” được gọi là số thập phân hữu hạn.
- Các số thập phân vô hạn tuần hoàn có tính chất: Trong phần thập phân, bắt đầu từ một hàng nào đó, có một chữ số hay một cụm chữ số liền nhau xuất hiện liên tiếp mãi.
Gợi ý đáp án:
a. Điểm A, B biểu diễn những số thập phân sau:
- Điểm A biểu diễn số 13,4
- Điểm B biểu diễn số 14,2
b. Làm tròn số thập phân được biểu diễn bởi điểm C với độ chính xác 0,05, ta được 14,6.
Bài 2.23 trang 37 Toán 7 tập 1
Thay dấu “?” bằng chữ số thích hợp.
a) -7,02 < -7, ? (1);
b) -15,3 ? 021 < -15,3819
Hướng dẫn giải:
- Các số thập phân chỉ gồm hữu hạn số sau dấu “,” được gọi là số thập phân hữu hạn.
- Các số thập phân vô hạn tuần hoàn có tính chất: Trong phần thập phân, bắt đầu từ một hàng nào đó, có một chữ số hay một cụm chữ số liền nhau xuất hiện liên tiếp mãi.
Gợi ý đáp án:
a) -7,02 < -7,0 (1);
b) -15,39021 < -15,3819
Bài 2.24 trang 37 Toán 7 tập 1
So sánh:
a. 12,26 và 12,(24);
b. 31,3(5) và 29,9(8)
Hướng dẫn giải:
- Các số thập phân chỉ gồm hữu hạn số sau dấu “,” được gọi là số thập phân hữu hạn.
- Các số thập phân vô hạn tuần hoàn có tính chất: Trong phần thập phân, bắt đầu từ một hàng nào đó, có một chữ số hay một cụm chữ số liền nhau xuất hiện liên tiếp mãi.
Gợi ý đáp án:
a. Ta có: 12,(24) = 12,2424... Vì so sánh số ở hàng phần chục ta có 4<6 nên 12,(24)< 12,26
b. Vì so sánh ở hàng chục ta có 3 > 2 nên 31,3(5) > 29,9(8)
Bài 2.25 trang 37 Toán 7 tập 1
Tính:
a.\(\sqrt{1}\)
b. \(\sqrt{1 + 2 + 1}\)
c. \(\sqrt{1 + 2 + 3 + 2+ 1}\)
Hướng dẫn giải:
- Căn bậc hai số học của một số a không âm, kí hiệu là \(\sqrt a\), là số x không âm sao cho
\({x^2} = a\)
- Căn bậc hai số học của một số tự nhiên không chính phương luôn là số số vô tỉ.
- Diện tích hình vuông bằng bình phương độ dài cạnh.
Gợi ý đáp án:
a. \(\sqrt{1} = 1\)
b. \(\sqrt{1 + 2 + 1} = \sqrt{4} = 2\)
c. \(\sqrt{1 + 2 + 3 + 2+ 1} = \sqrt{9}= 3\)
Bài 2.26 trang 37 Toán 7 tập 1
Tính:
a. \(\left ( \sqrt{3} \right )^{2}\)
b. \(\left ( \sqrt{21} \right )^{2}\)
Gợi ý đáp án:
a. \(\left ( \sqrt{3} \right )^{2} = \sqrt{3}\)
b. \(\left ( \sqrt{21} \right )^{2} = \sqrt{21}\)
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Chủ đề liên quan
Có thể bạn quan tâm
-
Sáng kiến kinh nghiệm: Một số biện pháp giáo dục lễ giáo cho trẻ Mầm non 5 - 6 tuổi
-
Bộ công thức Toán ôn thi THPT Quốc gia
-
Công thức tính lực đàn hồi của lò xo, định luật Húc
-
Văn mẫu lớp 12: Viết đoạn văn trả lời câu hỏi Sự ngông nghênh của tuổi trẻ khiến con người dễ bỏ lỡ những điều gì
-
Nghị luận về tình trạng học lệch, ôn thi lệch của học sinh hiện nay
-
35 đề ôn thi học kì 2 môn Tiếng Việt lớp 5 năm 2023 - 2024
-
Bài tập cuối tuần lớp 3 môn Toán Kết nối tri thức - Tuần 28
-
Bộ đề ôn thi học kì 2 môn Tiếng Anh 6 sách Kết nối tri thức với cuộc sống
-
Bài tập cuối tuần lớp 3 môn Toán Kết nối tri thức - Tuần 30
-
Báo cáo kết quả Bồi dưỡng thường xuyên giáo viên
Mới nhất trong tuần
-
Tìm nghiệm của đa thức
10.000+ -
Toán 7 Luyện tập chung trang 44
5.000+ -
Hình chiếu là gì? Cách vẽ hình chiếu trong toán học
50.000+ -
Bài tập các trường hợp bằng nhau của hai tam giác
50.000+ -
Tổng hợp bài tập Chương III môn Toán lớp 7
10.000+ -
Chứng minh đa thức không có nghiệm
10.000+ -
Cách chứng minh 3 điểm thẳng hàng
100.000+ 2 -
Các dạng toán nâng cao lớp 7
10.000+ -
Toán 7 Bài 34: Sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác
1.000+ -
Toán 7 Bài tập cuối chương VI - Kết nối tri thức với cuộc sống
5.000+