Chuyên đề các bài toán về căn thức thi vào lớp 10 Tài liệu ôn thi vào lớp 10 môn Toán
Chuyên đề các bài toán về căn thức thi vào lớp 10 môn Toán gồm 14 trang được biên soạn đầy đủ và chi tiết về 9 dạng toán cơ bản.
Bài tập về căn thức thi vào 10 được trình bày rất bài bản các dạng bài tập trọng tâm khác nhau có đáp án kèm theo. Qua đó giúp học sinh có thể tự nhận xét được năng lực bản thân, thấy được lỗi sai cần tránh, kịp thời lấp đầy lỗ hổng kiến thức, tìm ra các phương pháp làm bài nhanh. Ngoài ra để nâng cao kiến thức môn Toán thật tốt các em xem thêm một số tài liệu như: tâm đường tròn ngoại tiếp tam giác, bất đẳng thức Cosi, chuyên đề Giải phương trình bậc 2 chứa tham số, bài tập hệ thức Vi-et và các ứng dụng.
Chuyên đề các bài toán về căn thức
1. Căn bậc hai số học
- Căn bậc hai của một số không âm a là số x sao cho \(x^{2}=a.\)
- Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là \(\sqrt{a}\), số âm kí hiệu là
\(-\sqrt{a}.\)
- Số 0 có đúng một căn bậc hai là chính số 0 , ta viết \(\sqrt{0}=0.\)
- Với số dương a, số \(\sqrt{a}\) đgl căn bậc hai số học của a. Số 0 cũng đgl căn bậc hai số học của 0
- Với hai số không âm a, b, ta có: a<b\(\Leftrightarrow \sqrt{a}<\sqrt{b}\).
2. Căn thức bậc hai
- Với A là một biểu thức đại số, ta gọi \(\sqrt{A}\) là căn thức bậc hai của A.
\(\sqrt{A}\) xác định (hay có nghĩa) khi A lấy giá trị không âm.
\(- \sqrt{A^{2}}=|A|= \begin{cases}A & \text { nếu } A \geq 0 \\ -A & \text { nếu } A<0\end{cases}\)
Dạng 1: TÌM ĐIỀU KIỆN ĐỄ \(\sqrt{A}\) CÓ NGHĨA
- \(\sqrt{A}\)có nghĩa
\(\Leftrightarrow A \geq 0\)
- \(\sqrt{\frac{1}{A}}\) có nghĩa
\(\Leftrightarrow A>0\)
Bài 1. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
\(a) \sqrt{-3 x}\)
\(b) \sqrt{4-2 x}\)
\(c) \sqrt{-3 x+2}\)
\(d) \sqrt{3 x+1}\)
\(e) \sqrt{9 x-2}\)
\(f) \sqrt{6 x-1}\)
Đ S:\(a) x \leq 0\)
\(b) x \leq 2\)
\(c) x \leq \frac{2}{3}\)
\(d) x \geq-\frac{1}{3}\)
\(e) x \geq \frac{2}{9} \quad f) x \geq \frac{1}{6}\)
Bài 2. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
\(a) \frac{x}{x-2}+\sqrt{x-2}\)
\(b) \frac{x}{x+2}+\sqrt{x-2}\)
\(c) \frac{x}{x^{2}-4}+\sqrt{x-2}\)
\(d) \sqrt{\frac{1}{3-2 x}}\)
\(e) \sqrt{\frac{4}{2 x+3}}\)
\(f) \sqrt{\frac{-2}{x+1}}\)
ĐS: a) x>2
\(b) x \geq 2\)
c) x>2
\(d) x<\frac{3}{2}\)
\(e) x>-\frac{3}{2} \quad f) x<-1\)
Bài 3. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
\(a) \sqrt{x^{2}+1}\)
\(b) \sqrt{4 x^{2}+3}\)
\(c) \sqrt{9 x^{2}-6 x+1}\)
\(d) \sqrt{-x^{2}+2 x-1}\)
\(e) \sqrt{-|x+5|}\)
\(f) \sqrt{-2 x^{2}-1}\)
ĐS: \(a) x \in R\)
\(b) x \in R\)
\(c) x \in R\)
d) x=1
\(e) x=-5 \quad\)
f) không có
Bài 4. Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
\(a) \sqrt{4-x^{2}}\)
\(b) \sqrt{x^{2}-16}\)
\(c) \sqrt{x^{2}-3}\)
\(d) \sqrt{x^{2}-2 x-3}\)
\(e) \sqrt{x(x+2)}\)
\(f) \sqrt{x^{2}-5 x+6}\)
ĐS: \(a) |x| \leq 2\)
\(b) |x| \geq 4\)
\(c) |x| \geq \sqrt{3}\)
\(d) x \leq-1 hoặc x \geq 3\)
Bài 5. \(x \leq 2 hoặc x \geq 3\)
\(a) \sqrt{|x|-1}\)
\(b) \sqrt{|x-1|-3}\)
\(c) \sqrt{4-|x|}\)
\(d) \sqrt{x-2 \sqrt{x-1}}\)
\(e) \frac{1}{\sqrt{9-12 x+4 x^{2}}}\)
Dạng 2: TÍNH GIÁ TRỊ BIỂU THỨC
Áp dụng: \(\quad \sqrt{A^2}=|A|= \begin{cases}A & \text { nếu } A \geq 0 \\ -A & \text { nếu } A<0\end{cases}\)
Bài 1. Thực hiện các phép tính sau
\(a) -0,8 \sqrt{(-0,125)^2}\)
\(b) \sqrt{(-2)^6}\)
\(c) \sqrt{(\sqrt{3}-2)^2}\)
\(d) \sqrt{(2 \sqrt{2}-3)^2}\)
\(\sqrt{\left.\frac{1}{\sqrt{2}}-\frac{1}{2}\right)^2}\)
\(f) \sqrt{(0,1-\sqrt{0,1})^2}\)
DS: a) -0,1
b) 8
c) 2-\sqrt{3}
d) 3-2 \sqrt{2}
\(e) \frac{1}{\sqrt{2}}-\frac{1}{2} \quad f \sqrt{0.1}-0.1\)
Bài 2. Thực hiện các phép tính sau
\(a) \sqrt{(3-2 \sqrt{2})^2}+\sqrt{(3+2 \sqrt{2})^2}\)
\(b) \sqrt{(5-2 \sqrt{6})^2}-\sqrt{(5+2 \sqrt{6})^2}\)
\(c) \sqrt{(2-\sqrt{3})^2}+\sqrt{(1-\sqrt{3})^2}\)
\(d) \sqrt{(3+\sqrt{2})^2}-\sqrt{(1-\sqrt{2})^2}\)
\(e) \sqrt{(\sqrt{5}-\sqrt{2})^2}+\sqrt{(\sqrt{5}+\sqrt{2})^2}\)
\(f) \sqrt{(\sqrt{2}+1)^2}-\sqrt{(\sqrt{2}-5)^2}\)
DS:
a ) 6
c) 1 |
d) 4
|
Bài 3. Thực hiện các phép tính sau:
\(a) \sqrt{5+2 \sqrt{6}}-\sqrt{5-2 \sqrt{6}}\)
\(b) \sqrt{7-2 \sqrt{10}}-\sqrt{7+2 \sqrt{10}}\)
\(c) \sqrt{4-2 \sqrt{3}}+\sqrt{4+2 \sqrt{3}}\)
\(d) \sqrt{24+8 \sqrt{5}}+\sqrt{9-4 \sqrt{5}}\)
\(c) \sqrt{17-12 \sqrt{2}}+\sqrt{9+4 \sqrt{2}}\)
\(f) \sqrt{6-4 \sqrt{2}}+\sqrt{22-12 \sqrt{2}}\)
DS:
|
|
Dạng 3: RÚT GỌN BIỂU THỨC
Áp dụng
\(\sqrt{A^2}=|A|= \begin{cases}A & \text { nếu } A \geq 0 \\ -A & \text { nếu } A<0\end{cases}\)
Bài 1. Rút gọn các biểu thức sau:
\(a) x+3+\sqrt{x^2-6 x+9} \quad(x \leq 3)\)
\(b) \sqrt{x^2+4 x+4}-\sqrt{x^2}(-2 \leq x \leq 0)\)
\(c) \frac{\sqrt{x^2-2 x+1}}{x-1}(x>1)\)
\(d) |x-2|+\frac{\sqrt{x^2-4 x+4}}{x-2}(x<2)\)
DS:
a) 6 b) 2 |
c.) 1 d) 1-x |
Bài 2. Cho biểu thức \(A=\sqrt{x^2+2 \sqrt{x^2-1}}-\sqrt{x^2-2 \sqrt{x^2-1}}.\)
a) Với giá trị nào của x thì A có nghĩa?
b) Tính A nếu \(x \geq \sqrt{2}.\)
DS:
a)\(x \leq-1\) hoặc
\(x \geq 1\)
b) A=2
Bài 3. Cho 3 số dương x, y, z thỏa điều kiện: x y+y z+z x=1. Tính:
\(A=x \sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y \sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
DS: A=2. Chú y: \(1+y^2=(x y+y z+2 x)+y^2=(x+y)(y+z),\)
\(1+z^2=(y+z)(z+x), 1+x^2=(z+x)(x+y)\)
.......................
Mời các bạn tải File tài liệu để xem thêm nội dung tài liệu
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Chủ đề liên quan
Có thể bạn quan tâm
-
Bộ đề thi học kì 1 môn Toán, Tiếng Việt lớp 4 theo Thông tư 27
-
Sáng kiến kinh nghiệm: Một số biện pháp giáo dục lễ giáo cho trẻ Mầm non 5 - 6 tuổi
-
Bộ công thức Toán ôn thi THPT Quốc gia
-
Công thức tính lực đàn hồi của lò xo, định luật Húc
-
Văn mẫu lớp 12: Viết đoạn văn trả lời câu hỏi Sự ngông nghênh của tuổi trẻ khiến con người dễ bỏ lỡ những điều gì
-
Nghị luận về tình trạng học lệch, ôn thi lệch của học sinh hiện nay
-
35 đề ôn thi học kì 2 môn Tiếng Việt lớp 5 năm 2023 - 2024
-
Bài tập cuối tuần lớp 3 môn Toán Kết nối tri thức - Tuần 28
-
Bộ đề ôn thi học kì 2 môn Tiếng Anh 6 sách Kết nối tri thức với cuộc sống
-
Bài tập cuối tuần lớp 3 môn Toán Kết nối tri thức - Tuần 30
Mới nhất trong tuần
-
Cách chứng minh tam giác vuông
100.000+ -
Chuyên đề toán thực tế dành cho học sinh THCS
10.000+ -
Chứng minh phương trình luôn có nghiệm với mọi m
50.000+ -
Đề kiểm tra học kì II môn Toán lớp 9 - Sở GD và ĐT Đà Nẵng
10.000+ -
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa dấu căn
100.000+ 1 -
Bộ đề thi thử vào lớp 10 môn Toán năm 2019 - 2020 trường THCS Hồng Hà, Hà Nội
10.000+ -
Bộ đề kiểm tra 1 tiết Chương III Đại số lớp 9 (10 đề)
10.000+ -
Cách chứng minh 3 đường thẳng đồng quy
100.000+ -
Bài tập các hình khối trong thực tiễn (Có đáp án)
100+ -
Các dạng bài tập tần số và tần số tương đối
100+