Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của biểu thức nghiệm Ôn tập Toán 9
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của biểu thức nghiệm là một trong những dạng toán trọng tâm thường xuất hiện trong các bài kiểm tra, bài thi vào lớp 10 môn Toán.
Tài liệu tổng hợp toàn bộ kiến thức về cách giải kèm theo một số ví dụ minh họa và bài tập tự luyện. Thông qua tài liệu này giúp học sinh củng cố, nắm vững chắc kiến thức nền tảng, vận dụng với các bài tập cơ bản để đạt được kết quả cao trong kì thi vào lớp 10 sắp tới. Bên cạnh đó các bạn xem thêm cách giải hệ phương trình đối xứng loại 1.
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của biểu thức nghiệm
I. Kiến thức cần nhớ
* Cách làm bài toán như sau:
+ Đặt điều kiện cho tham số để phương trình đã cho có hai nghiệm x1 và x2 (thường là a ≠ 0 và ∆ ≥ 0)
+ Áp dụng hệ thức Vi-ét để biến đổi biểu thức nghiệm đã cho theo m
+ Một số bất đẳng thức thường dùng:
- Với mọi \(A \ge 0:{A^2} \ge 0;\sqrt A \ge 0\)
- Bất đẳng thức Cauchy (Cô - Si): với a, b là các số dương ta có: \(a + b \ge 2\sqrt {ab}\)
II. Một số ví dụ minh họa
Ví dụ 1. Cho phương trình bậc hai x2 + 2 (m+1) x + m2 - m + 1 = 0 (x là ẩn số, m là tham số). Tìm giá trị nhỏ nhất của \(A = x_1^2 + x_2^2 + {x_1}{x_2}\)
Lời giải:
Ta có:
∆' = b'2 - ac = (m + 1)2 - (m2 - m + 1) = m2 - 2m + 1 - m2 + m - 1 = -m
Để phương trình có hai nghiệm phân biệt x1, x2 ⇔ - m > 0 ⇔ m < 0
Vậy với m < 0 thì phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a} = - 2\left( {m + 1} \right)\\{x_1}{x_2} = {m^2} - m + 1\end{array} \right.\)
Có \(A = x_1^2 + x_2^2 + {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} + {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - {x_1}{x_2}\)
A = [-2 (m + 1)]2 - (m2 - m + 1)
A = 4 (m + 1)2 - m2 + m - 1
A = 4m2 + 8m + 4 - m2 + m - 1
A = 3m2 + 9m + 3
A = (m2 + 3m + 1)
Có \({m^2} + 3m + 1 = {m^2} + 2.\frac{3}{2}.m + \frac{9}{4} - \frac{9}{4} + 1 = {\left( {m + \frac{3}{2}} \right)^2} - \frac{5}{4}\)
\({\left( {m + \frac{3}{2}} \right)^2} \ge 0\forall m < 0 \Leftrightarrow {\left( {m + \frac{3}{2}} \right)^2} - \frac{5}{4} \ge \frac{{ - 5}}{4}\forall m < 0\)
\(\Leftrightarrow 3\left[ {{{\left( {m + \frac{3}{2}} \right)}^2} - \frac{5}{4}} \right] \ge \frac{{ - 15}}{4}\forall m < 0\)
Dấu “=” xảy ra \(\Leftrightarrow m + \frac{3}{2} = 0 \Leftrightarrow m = \frac{{ - 3}}{2}\left( {tm} \right)\)
Vậy min \(A = \frac{{ - 15}}{4} \Leftrightarrow m = \frac{{ - 3}}{2}\)
Ví dụ 2: Cho phương trình \({x^2} - 2\left( {m + 4} \right)x + {m^2} - 8 = 0\) (x là ẩn số, m là tham số). Tìm m để biểu thức
\(B = {x_1} + {x_2} - 3{x_1}{x_2}\) đạt giá trị lớn nhất
Lời giải:
Ta có \(\Delta ' = {b^{'2}} - ac = {\left( {m + 4} \right)^2} - \left( {{m^2} - 8} \right) = {m^2} + 8m + 16 - {m^2} + 8 = 8m + 24\)
Để phương trình có hai nghiệm phân biệt \(\Leftrightarrow 8m + 24 > 0 \Leftrightarrow m > - 3\)
Vậy với m > - 3 thì phương trình có hai nghiệm phân biệt thỏa mãn hệ thức Vi-ét:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a} = 2\left( {m + 4} \right)\\{x_1}{x_2} = \dfrac{c}{a} = {m^2} - 8\end{array} \right.\)
Có B = x1 + x2 - 3x1x2 = 2 (m + 4) - 3 (m2 - 8)
\(= - 3{m^2} + 2m + 32 = - 3\left( {{m^2} + 2.\frac{1}{3}.m + \frac{1}{9}} \right) + \frac{{97}}{3} = - 3{\left( {m + \frac{1}{3}} \right)^2} + \frac{{97}}{3}\)
\({\left( {m + \frac{1}{3}} \right)^2} \ge 0\forall m > - 3 \Leftrightarrow - 3{\left( {m + \frac{1}{3}} \right)^2} \le 0\forall m > - 3\)
\(\Leftrightarrow - 3{\left( {m + \frac{1}{3}} \right)^2} + \frac{{97}}{3} \le \frac{{97}}{3}\forall m > - 3\)
Dấu “=” xảy ra \(\Leftrightarrow m + \frac{1}{3} = 0 \Leftrightarrow m = - \frac{1}{3}\)
Vậy max\(B = \frac{{97}}{3} \Leftrightarrow m = \frac{{ - 1}}{3}\)
Ví dụ 3: Cho phương trình bậc hai ẩn số x: x2 - 2 (m + 1)x + m - 4 = 0. Tìm giá trị nhỏ nhất của biểu thức M = |x1 - x2|
Có ∆' = (m + 1)2 - (m - 4) = m2 + 2m + 1 + m + 4 = m2 + 3m + 5
\(= \left( {{m^2} + 2.\frac{3}{2}.m + \frac{9}{4}} \right) + \frac{{11}}{4} = {\left( {m + \frac{3}{2}} \right)^2} + \frac{{11}}{4} > 0\forall m\)
Vậy với mọi m phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a} = 2\left( {m + 1} \right)\\{x_1}{x_2} = \dfrac{c}{a} = m - 4\end{array} \right.\)
Có \(M = \left| {{x_1} - {x_2}} \right| \Rightarrow {M^2} = {\left( {\left| {{x_1} - {x_2}} \right|} \right)^2} = x_1^2 + x_2^2 - 2{x_1}{x_2}\)
M2 = (x1 + x2)2 - 4x1x2 = [2(m + 1)]2 - 4 (m - 4)
= 4(m2 + 2m + 1) - 4m + 16
= 4m2 + 8m + 4 - 4m + 16
= 4m2 + 4m + 20 = 4 (m2 + m + 5)
Có \({m^2} + m + 5 = \left( {{m^2} + 2.\frac{1}{2}.m + \frac{1}{4}} \right) - \frac{1}{4} + 5 = {\left( {m + \frac{1}{2}} \right)^2} + \frac{{19}}{4}\)
\(\begin{array}{l}
{\left( {m + \frac{1}{2}} \right)^2} \ge 0\forall m \Leftrightarrow {\left( {m + \frac{1}{2}} \right)^2} + \frac{{19}}{4} \ge \frac{{19}}{4}\forall m\\
\Leftrightarrow 4\left[ {{{\left( {m + \frac{1}{2}} \right)}^2} + \frac{{19}}{4}} \right] \ge 19\forall m
\end{array}\)
\(M = \left| {{x_1} - {x_2}} \right| \Rightarrow M \ge \sqrt {19}\)
Dấu “=” xảy ra khi và chỉ khi \(m + \frac{1}{2} = 0 \Leftrightarrow m = \frac{{ - 1}}{2}\)
Vậy min \(M = \sqrt {19} \Leftrightarrow m = \frac{{ - 1}}{2}\)
III. Một số bài tập tự luyện
Bài 1: Cho phương trình x2 - 2(m + 4)x + m2 - 8 = 0 (m tham số)
a, Tìm m để biểu thức \(A = x_1^2 + x_2^2 - {x_1} - {x_2}\) đạt giá trị nhỏ nhất
b, Tìm m để biểu thức \(C = x_1^2 + x_2^2 - {x_1}{x_2}\) đạt giá trị lớn nhất
Bài 2: Cho phương trình x2 + mx - m - 2 = 0 (x là ẩn số, m là tham số). Tìm m để biểu thức \(A = x_1^2 + x_2^2 - 4{x_1}{x_2}\) đạt giá trị nhỏ nhất
Bài 3: Cho phương trình x2 - 2 (m + 2)x + 6m + 3 = 0 (x là ẩn, m là tham số). Tìm giá trị của m để biểu thức \(A = x_1^2{x_2} + {x_1}x_2^2\) có giá trị nhỏ nhất
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Chủ đề liên quan
Có thể bạn quan tâm
-
Bài thu hoạch những nội dung chính trong công tác xây dựng Đảng ở cơ sở hiện nay
-
Ma trận đề thi học kì 2 lớp 5 năm 2024 - 2025 theo Thông tư 27
-
Tả cơn mưa rào mùa hạ - 3 Dàn ý & 35 bài văn tả cơn mưa lớp 5
-
Mẫu sáng kiến kinh nghiệm chuẩn - Mẫu sáng kiến kinh nghiệm dành cho giáo viên
-
Bộ đề thi học kì 2 môn Khoa học tự nhiên 8 năm 2024 - 2025 sách Cánh diều
-
Bộ đề thi học kì 2 môn Ngữ văn 8 năm 2024 - 2025 sách Kết nối tri thức với cuộc sống
-
Đáp án cuộc thi Giao lưu tìm hiểu An toàn giao thông cho giáo viên năm 2022 - 2023
-
Văn mẫu lớp 12: Nghị luận xã hội về sự thành công trong cuộc sống
-
Văn mẫu lớp 12: Nghị luận xã hội cách nuôi dưỡng vẻ đẹp tâm hồn
-
Soạn bài Tự đánh giá: Gói thuốc lá Cánh diều
Mới nhất trong tuần
-
Bộ đề kiểm tra 1 tiết Chương 1 Đại số lớp 9 (16 đề)
100.000+ -
Chứng minh phương trình luôn có nghiệm với mọi m
50.000+ -
Một số bài tập Toán nâng cao lớp 9 (Có đáp án)
10.000+ -
Bài tập hệ thức Vi-et và các ứng dụng
50.000+ -
Phân dạng và bài tập Hình học lớp 9
50.000+ 1 -
Tổng hợp các dạng bài tập Đại số lớp 9
50.000+ 1 -
Chứng minh đồ thị hàm số luôn đi qua một điểm cố định
5.000+ -
Chứng minh đẳng thức: cách chứng minh và bài tập
1.000+ -
Tìm m để hệ phương trình có nghiệm duy nhất
5.000+ -
Tìm giá trị x để A nhận giá trị nguyên
10.000+