Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số Giải Toán 12 Kết nối tri thức trang 5 → 14
Giải Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số là tài liệu vô cùng hữu ích giúp các em học sinh có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 12 Kết nối tri thức với cuộc sống tập 1 trang 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.
Giải bài tập Toán 12 Kết nối tri thức tập 1 Bài 1 được trình bày rõ ràng, cẩn thận, dễ hiểu nhằm giúp học sinh nhanh chóng biết cách làm bài. Đồng thời, cũng là tài liệu hữu ích giúp giáo viên thuận tiện trong việc hướng dẫn học sinh ôn tập Bài 1 Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. Mời thầy cô và các em theo dõi bài viết dưới đây của Eballsviet.com:
Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số
Giải Toán 12 Kết nối tri thức Tập 1 trang 13, 14
Bài 1.1
Tìm các khoảng đồng biến, khoảng nghịch biến của các hàm số có đồ thị như sau:
a) Đồ thị hàm số \((y = {x^3} - \frac{3}{2} {x^2})\) (H.1.11);
b) Đồ thị hàm số \(y = \sqrt[3]{{{{( {{x^2} - 4} )}^2}}}\) (H.1.12).
Lời giải:
a) Tập xác định của hàm số là R.
Từ đồ thị hàm số Hình 1.11 suy ra:
- Hàm số đồng biến trên khoảng (- ∞; 0) và (1; + ∞)
- Hàm số nghịch biến trên khoảng (0; 1)
b) Tập xác định của hàm số là R.
Từ đồ thị hàm số Hình 1.12 suy ra:
- Hàm số đồng biến trên khoảng (- 2; 0) và (2; + ∞)
- Hàm số nghịch biến trên khoảng (- ∞; - 2) và (0; 2).
Bài 1.2
Xét sự đồng biến, nghịch biến của các hàm số sau:
a) \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x + 1\)
b) \(y = - {x^3} + 2{x^2} - 5x + 3\)
a) \(y=\frac{1}{3}x^3-2x^2+3x+1\)
Tập xác định của hàm số là R.
Ta có: y' = x2 - 4x + 3
y' = 0 \(\Leftrightarrow\) x = 1 hoặc x = 3.
Lập bảng biến thiên của hàm số:
Từ bảng biến thiên, ta có:
Hàm số đồng biến trên các khoảng \(\left(-∞;1\right)\) và
\(\left(3;+∞\right)\)
Hàm số nghịch biến trên các khoảng (1; 3).
b) y = - x3 + 2x2 - 5x + 3.
Tập xác định của hàm số là R.
Ta có: y' = - 3x2 + 4x - 5
= \(-3\left(x^2-\frac{4}{3}x+\frac{5}{3}\right)\)
\(=-3\left(x-\frac{2}{3}\right)^2-\frac{11}{3} <0\) với mọi x
Hàm số nghịch biến trên R.
Bài 1.3
Tìm các khoảng đơn điệu của các hàm số sau:
a) \(y = \frac{{2x - 1}}{{x + 2}}\);
b) \(y = \frac{{{x^2} + x + 4}}{{x - 3}}\).
Lời giải:
a) \(y=\frac{2x-1}{x+2}\)
Tập xác định của hàm số là R \ {- 2}
Ta có: \(y'=\frac{2\left(x+2\right)-\left(2x-1\right)}{\left(x+2\right)^2}=\frac{5}{\left(x+2\right)^2} >0\), với mọi x ≠ - 2.
Lập bảng biến thiên của hàm số:
Từ bảng biến thiên, ta có: Hàm số đồng biến trên các khoảng \(\left(-∞;-2\right)\) và
\(\left(-2;+∞\right)\)
b) \(y=\frac{x^2+x+4}{x-3}\)
Tập xác định của hàm số là R \ {3}
Ta có: \(y'=\frac{(2x+1)\left(x-3\right)-\left(x^2+x+4\right)}{\left(x-3\right)^2}=\frac{x^2-6x-7}{\left(x-3\right)^2}\)
y' = 0 \(\Leftrightarrow\) x= - 1 hoặc x = 7
Lập bảng biến thiên của hàm số:
Từ bảng biến thiên, ta có:
Hàm số đồng biến trên các khoảng \(\left(-∞;-1\right)\) và
\(\left(7;+∞\right)\)
Hàm số nghịch biến trên các khoảng (- 1; 3) và (3; 7)
Bài 1.4
Xét chiều biến thiên của các hàm số sau:
a) \(y = \sqrt {4 - {x^2}} ;\)
b) \(y = \frac{x}{{{x^2} + 1}}\).
Lời giải:
a) \(y=\sqrt{4-x^2}\)
Tập xác định của hàm số là: [- 2; 2]
Ta có: \(y'=-\frac{x}{\sqrt{4-x^2}}\); y' > 0 với x ∈ (- 2; 0) và y' < 0 với (0; 2)
Do đó, hàm số đồng biến trên khoảng (-2; 0) và nghịch biến trên khoảng (0; 2).
b) \(y=\frac{x}{x^2+1}\)
Tập xác định của hàm số là R.
Ta có: \(y'=\frac{x^2+1-2x^2}{(x^2+1)^2}=\frac{1-x^2}{(x^2+1)^2}\)
y' = 0 \(\Leftrightarrow\) x = 1 hoặc x = - 1.
Lập bảng biến thiên của hàm số:

Từ bảng biến thiên, ta có:
Hàm số đồng biến trên khoảng (- 1; 1)
Hàm số nghịch biến trên khoảng (- ∞; - 1) và (1; + ∞).
Bài 1.5
b) Tính đạo hàm N’(t) và \(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right)\). Từ đó giải thích tại sao dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua một ngưỡng nào đó.
Lời giải:
a) Số dân của thị trấn đó vào năm 2000, tức t = 0 là:
\(N\left(0\right)=\frac{25.0+10}{0+5}=2\) (nghìn người)
Số dân của thị trấn đó vào năm 2015, tức t = 15 là:
\(N\left(15\right)=\frac{25.15+10}{15+5}=19,25\) (nghìn người)
b) Ta có \(N'\left(t\right)=\frac{25\left(t+5\right)-\left(25t+10\right)}{\left(t+5\right)^2}=\frac{115}{\left(t+5\right)^2} >0\) với mọi t.
\(\lim_{t\rightarrow +\infty} N(t) = \lim_{t\rightarrow +\infty} \frac{25t+10}{t+5}=25\)
Do đó số dân của thị trấn đó luôn tăng nhưng sẽ không vượt quá 25 nghìn người.
Bài 1.6
Đồ thị của đạo hàm bậc nhất \(y = f'\left( x \right)\) của hàm số f(x) được cho trong Hình 1.13:
a) Hàm số f(x) đồng biến trên những khoảng nào? Giải thích.
b) Tại giá trị nào của x thì f(x) có cực đại hoặc cực tiểu? Giải thích.
Lời giải:
a) Từ đồ thi của hàm số y = f'(x), ta có:
Hàm số đồng biến trên các khoảng (2; 4) và (6; + ∞)
Hàm số nghịch biến trên các khoảng (0; 2) và (4; 6)
b) Ta có:
f'(x) < 0 với mọi điểm x ∈ (0; 2) và f'(x) > 0 với mọi điểm x ∈ (0; 4) nên x = 2 là điểm cực tiểu.
f'(x) < 0 với mọi điểm x ∈ (4; 6) và f'(x) > 0 với mọi điểm x ∈ (6; + ∞) nên x = 6 là điểm cực tiểu.
f'(x) > 0 với mọi điểm x ∈ (2; 4) và f'(x) < 0 với mọi điểm x ∈ (4; 6) nên x = 4 là điểm cực đại.
Bài 1.7
Tìm cực trị của các hàm số sau:
a) \(y = 2{x^3} - 9{x^2} + 12x - 5\);
b) \(y = {x^4} - 4{x^2} + 2\);
c) \(y = \frac{{{x^2} - 2x + 3}}{{x - 1}}\);
d) \(y = \sqrt {4x - 2{x^2}}\).
Bài 1.8
Cho hàm số \(y = f\left( x \right) = \left| x \right|\).
a) Tính các giới hạn \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) và
\(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\). Từ đó suy ra hàm số không có đạo hàm tại x = 0.
b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại x = 0. (Xem Hình 1.4)
Bài 1.9
Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hóa bằng hàm số \(f\left( t \right) = \frac{{5\;000}}{{1 + 5{e^{ - t}}}},t \ge 0,\) trong đó thời gian t được tính bằng năm, kể từ khi phát hành sản phẩm mới. Khi đó, đạo hàm f’(t) sẽ biểu thị tốc độ bán hàng. Hỏi sau khi phát hành bao nhiêu năm thì tốc độ bán hàng là lớn nhất?
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Chủ đề liên quan
Có thể bạn quan tâm
-
Bài văn mẫu Lớp 8: Bài viết số 6 (Đề 1 đến Đề 3)
-
Viết bài văn biểu cảm về con người hoặc sự việc
-
Viết đoạn văn tả một đồ vật em yêu thích
-
Tổng hợp 300 câu trắc nghiệm Atlat địa lí Việt Nam trọng tâm nhất
-
Kể về một việc tốt em đã làm - 3 Dàn ý & 37 bài văn mẫu lớp 6 hay nhất
-
Đáp án tự luận Mô đun 9 môn Toán Tiểu học
-
Kể về ngày tết ở quê em (36 mẫu) - Tập làm văn lớp 3
-
Luyện từ và câu: Luyện tập về trạng ngữ - Tiếng Việt 4 Chân trời sáng tạo
-
Kể về một lần em mắc lỗi (bỏ học, nói dối, không làm bài...)
-
Chuyên đề phương trình bậc nhất một ẩn lớp 8
Mới nhất trong tuần
-
Toán 12 Bài tập cuối chương III
100+ -
Toán 12 Bài 10: Phương sai và độ lệch chuẩn
100+ -
Toán 12 Bài 9: Khoảng biến thiên và khoảng tứ phân vị
100+ -
Toán 12 Bài tập cuối chương II
100+ -
Toán 12 Bài 8: Biểu thức toạ độ của các phép toán vectơ
100+ -
Toán 12 Bài 7: Hệ trục tọa độ trong không gian
100+ -
Toán 12 Bài 6: Vectơ trong không gian
100+ -
Toán 12 Bài tập cuối chương I
100+ -
Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn
100+ -
Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
100+