Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác Các dạng bài tập Toán 11
Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác là một trong những nội dung quan trọng trong chương trình lớp 11 mà học sinh cần phải ghi nhớ.
Tìm giá trị lớn nhất, nhỏ nhất của hàm số lượng giác bao gồm cách tìm giá trị lớn nhất nhỏ nhất của hàm số lượng giác, ví dụ minh họa và một số dạng bài tập có đáp án kèm theo. Qua đó giúp các bạn học sinh có thêm nhiều tư liệu tham khảo, nhanh chóng ghi nhớ được kiến thức để biết cách giải các bài tập Toán 11. Vậy sau đây là nội dung chi tiết tài liệu, mời các bạn theo dõi tại đây.
Tìm giá trị lớn nhất, nhỏ nhất của hàm số lượng giác
1. Cách tìm giá trị lớn nhất nhỏ nhất của hàm số lượng giác
Để tìm được giá trị lớn nhất;giá trị nhỏ nhất của hàm số ta cần chú ý:
+ Với mọi x ta luôn có: - 1 ≤ cosx ≤ 1; -1 ≤ sinx ≤ 1
+Với mọi x ta có: 0 ≤ |cosx| ≤ 1 ;0 ≤ |sinx| ≤ 1
+ Bất đẳng thức bunhia –copski: Cho hai bộ số (a1; a2) và (b1;b2) khi đó ta có:
(a1.b1+ a2.b2 )2 ≤ ( a12+ a22 ).( b12+ b22 )
Dấu “=” xảy ra khi: a1/a2 = b1/b2
+ Giả sử hàm số y= f(x) có giá trị lớn nhất là M và giá trị nhỏ nhất là m. Khi đó; tập giá trị của hàm số là [m; M].
+ Phương trình : a. sinx+ b. cosx= c có nghiệm khi và chỉ khi a2 + b2 ≥ c2
2. Ví dụ giá trị lớn nhất, nhỏ nhất của hàm số lượng giác
Ví dụ 1: Hàm số y= 1+ 2cos2x đạt giá trị nhỏ nhất tại x= x0. Mệnh đề nào sau đây là đúng?
A.x0=π+k2π, kϵZ .
B.x0=π/2+kπ, kϵZ .
C.x0=k2π, kϵZ .
D.x0=kπ ,kϵZ .
Trả lời.
Chọn B.
Ta có - 1 ≤ cosx ≤ 1 ⇒ - 0 ≤ cos2x ≤ 1 ⇒ 1 ≤ 1+2cos2x ≤ 3
Do đó giá trị nhỏ nhất của hàm số bằng 1 .
Dấu ‘=’ xảy ra khi cosx=0 ⇒ x=π/2+kπ, kϵZ .
Ví dụ 2: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= sin2x+ 2cos2x.
A.M= 3 ;m= 0
B. M=2 ; m=0.
C. M=2 ; m= 1.
D.M= 3 ; m= 1.
Trả lời.
Chọn C.
Ta có: y = sin2 x+ 2cos2x = (sin2x+ cos2x) + cos2x = 1+ cos2 x.
Do: -1 ≤ cosx ≤ 1 nên 0 ≤ cos2 x ≤ 1 ⇒ 1 ≤ cos2 x+1 ≤ 2
Suy ra giá trị lớn nhất của hàm số là M= 2 và giá trị nhỏ nhất của hàm số là m= 1
Ví dụ 3: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= 4sinx - 3
A.M= 1; m= - 7
B. M= 7; m= - 1
C. M= 3; m= - 4
D. M=4; m= -3
Lời giải
Chọn A
Ta có : - 1 ≤ sinx ≤ 1 nên - 4 ≤ 4sinx ≤ 4
Suy ra : - 7 ≤ 4sinx-3 ≤ 1
Do đó : M= 1 và m= - 7
Ví dụ 4: Tìm tập giá trị T của hàm số y= -2cos2x + 10 .
A. [5; 9]
B.[6;10]
C. [ 8;12]
D. [10; 14]
Trả lời
Chọn C
Với mọi x ta có : - 1 ≤ cos2x ≤ 1 nên-2 ≤ -2cos2x ≤ 2
⇒ 8 ≤ -2cos2x+10 ≤ 12
Do đó tập giá trị của hàm số đã cho là : T= [ 8 ;12]
3. Bài tập giá trị lớn nhất, nhỏ nhất của hàm số lượng giác
Câu 1: Tìm giá trị lớn nhất, nhỏ nhất của hàm số: \(y=4\sin x\cos x+1\)
Hướng dẫn giải
Ta có: \(y=4\sin x\cos x+1=2\sin 2x+1\)
Do \(-1\le \sin 2x\le 1\Rightarrow -2\le 2\sin 2x\le 2\Rightarrow -2+1\le 2\sin 2x+1\le 2+1\)
\(\Rightarrow -1\le 2\sin 2x+1\le 3\) hay
\(-1\le y\le 3\)
\(y=3\) khi và chỉ khi
\(\sin 2x=1\Rightarrow x=\frac{\pi }{4}+k\pi (k\in \mathbb{Z})\)
\(y=-1\) khi và chỉ khi
\(\sin 2x=-1\Rightarrow x=-\frac{\pi }{4}+k\pi (k\in \mathbb{Z})\)
Vậy giá trị lớn nhất của hàm số là 2, giá trị nhỏ nhất của hàm số là -1
Câu 2: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: \(y=4-3{{\sin }^{2}}x\)
Hướng dẫn giải
Ta có: \(0\le {{\sin }^{2}}x\le 1\Rightarrow 0\ge -3{{\sin }^{2}}x\ge -3\Rightarrow 4-0\ge y\ge 4-3\Rightarrow 4\ge y\ge 1\)
\(y=4\) khi và chỉ khi
\({{\sin }^{2}}x=1\Rightarrow {{\cos }^{2}}x=0\Rightarrow \cos x=0\Rightarrow x=\frac{\pi }{2}+k\pi (k\in \mathbb{Z})\)
\(y=1\) khi và chỉ khi
\({{\sin }^{2}}x=0\Rightarrow \sin x=0\Rightarrow x=k\pi (k\in \mathbb{Z})\)
Vậy giá trị lớn nhất của biểu thức là 4, giá trị nhỏ nhất của biểu thức là 1
Ví dụ 3: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: \(y=6{{\cos }^{2}}x+2{{\cos }^{2}}2x\)
Hướng dẫn giải
Ta có: \(y=6{{\cos }^{2}}x+{{\cos }^{2}}2x=6{{\cos }^{2}}x+{{(2{{\cos }^{2}}x-1)}^{2}}=4{{\cos }^{4}}x+2{{\cos }^{2}}x+1\)
Đặt \(t={{\cos }^{2}}x, t\in \left[ 0,1 \right]\)ta có hàm số
\(y=4{{t}^{2}}+2t+1\)
Giá trị lớn nhất của hàm số là 7 khi \(\cos x=1\Rightarrow x=k2\pi (k\in \mathbb{Z})\)
Giá trị nhỏ nhất của hàm số là 1 khi \(\cos x=0\Rightarrow x=\frac{\pi }{2}+k2\pi (k\in \mathbb{Z})\)
Ví dụ 4: Tìm giá trị lớn nhất, nhỏ nhất của hàm số:
\(a. y=3\sin x+4\cos x+5\)
\(b. y=\sqrt{2\sin x+3}\)
Hướng dẫn giải
a. Xét phương trình \(y=3\sin x+4\cos x+5\Leftrightarrow 3\sin x+4\cos x+5-y=0\)
\(\Rightarrow\) Phương trình có nghiệm
\(\Leftrightarrow {{3}^{2}}+{{4}^{2}}\ge {{(5-y)}^{2}}\Leftrightarrow {{y}^{2}}-10y\le 0\Leftrightarrow 0\le y\le 10\)
Vậy hàm số có giá trị lớn nhất là 10, giá trị nhỏ nhất là 0
b. Ta có: \(-1\le \sin x\le 1\Rightarrow -2\le 2\sin x\le 2\Rightarrow -2+3\le 2\sin x+3\le 2+3\)
\(\Rightarrow 1\le 2\sin x+3\le 5\)
\(\Rightarrow 1\le y\le 5\)
\(y=5\) khi và chỉ khi
\(\sin x=1\Rightarrow x=\frac{\pi }{2}+k2\pi (k\in \mathbb{Z})\)
\(y=1\) khi và chỉ khi
\(\sin x=0\Rightarrow x=k2\pi (k\in \mathbb{Z})\)
Vây giá trị lớn nhất của hàm số là 5
Giá trị nhỏ nhất của hàm số là 1
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Chủ đề liên quan
Có thể bạn quan tâm
-
Sáng kiến kinh nghiệm: Một số biện pháp giáo dục lễ giáo cho trẻ Mầm non 5 - 6 tuổi
-
Bộ công thức Toán ôn thi THPT Quốc gia
-
Công thức tính lực đàn hồi của lò xo, định luật Húc
-
Văn mẫu lớp 12: Viết đoạn văn trả lời câu hỏi Sự ngông nghênh của tuổi trẻ khiến con người dễ bỏ lỡ những điều gì
-
Nghị luận về tình trạng học lệch, ôn thi lệch của học sinh hiện nay
-
35 đề ôn thi học kì 2 môn Tiếng Việt lớp 5 năm 2023 - 2024
-
Bài tập cuối tuần lớp 3 môn Toán Kết nối tri thức - Tuần 28
-
Bộ đề ôn thi học kì 2 môn Tiếng Anh 6 sách Kết nối tri thức với cuộc sống
-
Bài tập cuối tuần lớp 3 môn Toán Kết nối tri thức - Tuần 30
-
Báo cáo kết quả Bồi dưỡng thường xuyên giáo viên
Mới nhất trong tuần
-
Hướng dẫn sử dụng máy tính cầm tay giải nhanh trắc nghiệm lượng giác
50.000+ -
Bộ đề thi khảo sát chất lượng đầu năm môn Toán lớp 11 năm 2023 - 2024
10.000+ -
Phương trình tiếp tuyến
1.000+ -
Toán 11 Bài 17: Hàm số liên tục
100+ -
Phiếu bài tập cuối tuần Toán 11
100+ -
Bài tập đường thẳng và mặt phẳng trong không gian, quan hệ song song
10.000+ -
Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác
1.000+ -
Tính tuần hoàn của hàm số lượng giác
1.000+ -
Tập xác định, tập giá trị của hàm số lượng giác: Lý thuyết và bài tập
10.000+ -
Xét hàm số liên tục trên một tập
100+