Công thức cấp số cộng: Lý thuyết và bài tập Công thức tính cấp số cộng
Cấp số cộng là 1 dãy số (hữu hạn hoặc vô hạn) thỏa mãn điều kiện: Kể từ số hạng thứ 2 trở đi đều bằng số hạng đứng trước nó cộng với 1 số không đổi. Vậy công thức cấp số cộng là gì? Điều kiện thành lập cấp số cộng như thế nào? Mời các bạn cùng theo dõi bài viết dưới đây nhé.
Công thức cấp số cộng
I. Công thức tổng quát của cấp số cộng
\(\left( {{U_n}} \right) = \left\{ {\begin{array}{*{20}{c}}
{{u_1} = a} \\
{{u_{n + 1}} = {u_n} + d}
\end{array}\left( {n \in \mathbb{N}*} \right)} \right.\)d là công sai.
II. Số hạng thứ n của cấp số cộng
\({u_{n + 1}} = {u_1} + \left( {n - 1} \right)d \Rightarrow d = \frac{{{u_{n + 1}} - {u_1}}}{{n - 1}}\)
III.Điều kiện lập thành cấp số cộng
Ba số hạng \({u_{n - 1}},{u_n},{u_{n + 1}}\) là 3 số hạng liên tiếp của cấp số cộng khi
\({u_n} = \frac{{{u_{n - 1}} + {u_{n + 1}}}}{2}\) với
\(n \geqslant 1\)
IV. Tổng của n số hạng đầu của cấp số cộng
Tổng riêng thứ n xác định bởi công thức:
\(S = {u_1} + {u_2} + ... + {u_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\)
Chú ý
a. Dãy số \(\left( {{U_n}} \right)\) là một cấp số cộng, công sai d
\(\Leftrightarrow {u_{n + 1}} - {u_n} = d\) không phụ thuộc vào n
c. Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Do đó, ta thường biểu diễn giả thiết bài toán qua \({u_1},d\)
V. Phân dạng bài tập cấp số cộng
Dạng 1: Nhận biết cấp số cộng
Bước 1: Tìm công sai khi biết hai số hạng liên tiếp nhau theo công thức:\(d = {u_n} – {u_{n – 1}},\forall n \ge 2.\)
Bước 2: Kết luận:
- Nếu d là số không đổi thì dãy
\(\left( {{u_n}} \right)\) là CSC.
- Nếu d thay đổi theo n thì dãy
\(\left( {{u_n}} \right)\) không là CSC.
Dạng 2: Tìm công sai từ công thức cấp số cộng
Sử dụng các tính chất của CSC ở trên, sau đó biến đổi để tính công sai d
Dạng 3: Tìm số hạng của cấp số cộng
Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1} + \left( {n – 1} \right)d\)
Dạng 4: Tính tổng cấp số cộng của n số hạng đầu tiên
Ta vận dụng công thức tính tổng cấp số cộng:
\(\begin{array}{l} {S_n} = {u_1} + {u_2} + … + {u_n}\\ = \frac{{\left( {{u_1} + {u_n}} \right).n}}{2}\\ = \frac{{\left[ {2{u_1} + \left( {n – 1} \right)d} \right].n}}{2} \end{array}\)
Dạng 5: Tìm cấp số cộng
- Tìm các yếu tố xác định một cấp số cộng như: số hạng đầu
\({u_1},\) công sai d.
- Tìm công thức cho số hạng tổng quát
\({u_n} = {u_1} + \left( {n – 1} \right)d.\)
VI. Bài tập cấp số cộng
Bài 1. Cho cấp cấp số cộng \((u_n)\) với
\(u_1 = 3 và u_2 = 9\). Công sai của cấp số cộng đã cho bằng
Gợi ý
Công sai của cấp số cộng đã cho bằng \({u_2} – {u_1} = 6\)
Bài 2: Cho một CSC có\({u_1} = – 3;\,\,{u_6} = 27\). Tìm d ?
Gợi ý
\(\begin{array}{l} {u_6} = 27\\ \Leftrightarrow {u_1} + 5d = 27\\ \Leftrightarrow – 3 + 5d = 27\\ \Leftrightarrow d = 6 \end{array}\)
Bài 3: Cho một CSC có \({u_1} = \frac{1}{3};\,\,{u_8} = 26\) Tìm d?
Gợi ý
\(\begin{array}{l} {u_8} = 26 \Leftrightarrow {u_1} + 7d = 26\\ \Leftrightarrow \frac{1}{3} + 7d = 26\\ \Leftrightarrow d = \frac{{11}}{3} \end{array}\)
Bài 4: Cho CSC \(({u_n})\)thỏa:
\(\left\{ \begin{array}{l} {u_5} + 3{u_3} – {u_2} = – 21\\ 3{u_7} – 2{u_4} = – 34 \end{array} \right.\)
1. Tính số hạng thứ 100 của cấp số.
2. Tính tổng cấp số cộng của 15 số hạng đầu.
3. Tính \(S = {u_4} + {u_5} + … + {u_{30}}.\)
Gợi ý
Từ giả thiết bài toán, ta có:
\(\begin{array}{l} \left\{ \begin{array}{l} {u_1} + 4d + 3({u_1} + 2d) – ({u_1} + d) = – 21\\ 3({u_1} + 6d) – 2({u_1} + 3d) = – 34 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {u_1} + 3d = – 7\\ {u_1} + 12d = – 34 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {u_1} = 2\\ d = – 3 \end{array} \right. \end{array}\)
1. Số hạng thứ 100 của cấp số:\({u_{100}} = {u_1} + 99d = – 295\)
2. Tổng của 15 số hạng đầu: \({S_{15}} = \frac{{15}}{2}\left[ {2{u_1} + 14d} \right] = – 285\)
3. Ta có: \(\begin{array}{l} S = {u_4} + {u_5} + … + {u_{30}} = \frac{{27}}{2}\left[ {2{u_4} + 26d} \right]\\ = 27\left( {{u_1} + 16d} \right) = – 1242 \end{array}\)
Chú ý: Ta có thể tính S theo cách sau:
\(S = {S_{30}} – {S_3} = 15\left( {2{u_1} + 29d} \right) – \frac{3}{2}\left( {2{u_1} + 2d} \right) = – 1242.\)
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Chủ đề liên quan
Có thể bạn quan tâm
-
Bộ đề thi học kì 1 môn Toán, Tiếng Việt lớp 4 theo Thông tư 27
-
Sáng kiến kinh nghiệm: Một số biện pháp giáo dục lễ giáo cho trẻ Mầm non 5 - 6 tuổi
-
Bộ công thức Toán ôn thi THPT Quốc gia
-
Công thức tính lực đàn hồi của lò xo, định luật Húc
-
Văn mẫu lớp 12: Viết đoạn văn trả lời câu hỏi Sự ngông nghênh của tuổi trẻ khiến con người dễ bỏ lỡ những điều gì
-
Nghị luận về tình trạng học lệch, ôn thi lệch của học sinh hiện nay
-
35 đề ôn thi học kì 2 môn Tiếng Việt lớp 5 năm 2023 - 2024
-
Bài tập cuối tuần lớp 3 môn Toán Kết nối tri thức - Tuần 28
-
Bộ đề ôn thi học kì 2 môn Tiếng Anh 6 sách Kết nối tri thức với cuộc sống
-
Bài tập cuối tuần lớp 3 môn Toán Kết nối tri thức - Tuần 30
Mới nhất trong tuần
-
Công thức tính phần trăm khối lượng
10.000+ -
Tâm đường tròn nội tiếp tam giác: Lý thuyết & các dạng bài tập
100.000+ -
Công thức tính đường cao trong tam giác
10.000+ -
Tam giác cân: Khái niệm, tính chất, cách chứng minh và bài tập
100.000+ -
Hướng dẫn tìm công thức truy hồi của dãy số
50.000+ -
Góc giữa hai mặt phẳng: Định nghĩa, cách xác định và Bài tập (có đáp án)
100.000+ -
Tích phân lớp 12
10.000+ -
Toán Tiểu học: Công thức tính diện tích, chu vi, thể tích hình cơ bản
1M+ 13 -
Tổng hợp kiến thức và các dạng bài tập hình học lớp 4
10.000+ -
Tổng hợp kiến thức Toán 9
100.000+