Công thức biến đổi tích thành tổng Công thức biến tích thành tổng
Công thức biến đổi tích thành tổng là tài liệu vô cùng hữu ích mà Eballsviet.com muốn giới thiệu đến các bạn lớp 12 cùng tham khảo.
Công thức biến đổi tích thành tổng bao gồm công thức biến đổi, cách ghi nhớ và các ví dụ minh họa có đáp án kèm theo. Qua công thức biến tích thành tổng giúp các bạn học sinh lớp 12 có thêm nhiều tư liệu tham khảo, trau dồi kiến thức để giải nhanh được các bài tập lượng giác. Ngoài ra các bạn xem thêm: 6 Công thức tính lãi suất, Cách tính số phức liên hợp.
Công thức biến đổi tích thành tổng
1. Công thức biến đổi tích thành tổng
\(\begin{aligned}
&\cos a \cdot \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)] \\
&\sin a \cdot \sin b=-\frac{1}{2}[\cos (a+b)-\cos (a-b)] \\
&\sin a \cdot \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]
\end{aligned}\)
2. Cách ghi nhớ Công thức biến đổi tích thành tổng
Tính sin tổng ta lập tổng sin cô
Tính cô tổng lập ta hiệu đôi cô đôi chàng
còn tính tan tử + đôi tan (hay là: tan tổng lập tổng 2 tan)
1 trừ tan tích mẫu mang thương rầu
Nếu gặp hiệu ta chớ lo âu,
Đổi trừ thành cộng ghi sâu trong lòng
Một cách nhớ khác của câu Tang mình + với tang ta, bằng sin 2 đứa trên cos ta cos mình… là
tangx + tangy: tình mình cộng lại tình ta, sinh ra hai đứa con mình con ta
3. Ví dụ công thức biến đổi tích thành tổng
Để làm bài tập dạng này, ta phải nắm vững công thức biến đổi tích thành tổng và áp dụng để biến đổi.
Ví dụ 1: Tính giá trị của biểu thức \(\mathrm{A}=\sin \frac{13 \pi}{24} \sin \frac{5 \pi}{24}\)
Hướng dẫn giải:
\(\begin{aligned}
\mathrm{A} &=\sin \frac{13 \pi}{24} \sin \frac{5 \pi}{24} \\
&=\frac{1}{2}\left[\cos \left(\frac{13 \pi}{24}-\frac{5 \pi}{24}\right)-\cos \left(\frac{13 \pi}{24}+\frac{5 \pi}{24}\right)\right] \\
&=\frac{1}{2}\left(\cos \frac{\pi}{3}-\cos \frac{3 \pi}{4}\right) \\
&=\frac{1}{2}\left(\frac{1}{2}-\left(-\frac{\sqrt{2}}{2}\right)\right)=\frac{1+\sqrt{2}}{4}
\end{aligned}\)
Ví dụ 2: Biến đổi thành tổng: \(A=2 \sin x \cdot \sin 2 x \cdot \sin 3 x\)
Hướng dẫn giải:\(\begin{aligned}
\mathrm{A} &=2 \sin x \cdot \sin 2 x \cdot \sin 3 x \\
&=2 \cdot \frac{1}{2}(\cos (x-2 x)-\cos (x+2 x)) \cdot \sin 3 x \\
&=(\cos (-x)-\cos 3 x) \cdot \sin 3 x \\
&=\cos x \cdot \sin 3 x-\cos 3 x \cdot \sin 3 x \\
&=\frac{1}{2}(\sin (3 x-x)+\sin (3 x+x))-\frac{1}{2} \sin 6 x \\
&=\frac{1}{2} \sin 2 x+\frac{1}{2} \sin 4 x-\frac{1}{2} \sin 6 x
\end{aligned}\)
Ví dụ 3: Cho \(\cos 2 \alpha=\frac{\sqrt{5}}{5}, \alpha \in\left[-\frac{\pi}{2} ; 0\right]\) . Tính
\(\mathrm{P}=\sin a \cdot \cos 3 \mathrm{a}+\cos ^{2} \mathrm{a}\)
Hướng dẫn giải:
Ta có:
\(\begin{aligned}
&\sin ^{2} 2 \alpha=1-\cos ^{2} 2 \alpha=\frac{4}{5} \Rightarrow \sin 2 \alpha=\pm \frac{2}{\sqrt{5}} \\
&\text { Vì } \alpha \in\left[-\frac{\pi}{2} ; 0\right] \Rightarrow 2 \alpha \in[-\pi ; 0] \text { nên } \sin 2 \alpha<0
\end{aligned}\)
Do đó \(\sin 2 \alpha=-\frac{2}{\sqrt{5}}\)
Ta có:
\(\begin{aligned}
\mathrm{P} &=\sin \alpha \cos 3 \alpha+\cos ^{2} \alpha \\
&=\frac{1}{2}(\sin (\alpha-3 \alpha)+\sin (\alpha+3 \alpha))+\frac{1+\cos 2 \alpha}{2} \\
&=\frac{1}{2}(\sin (-2 \alpha)+\sin 4 \alpha)+\frac{1+\cos 2 \alpha}{2} \\
&=\frac{1}{2}(-\sin 2 \alpha+2 \sin 2 \alpha \cos 2 \alpha)+\frac{1+\cos 2 \alpha}{2} \\
&=\frac{1}{2}\left(-\left(-\frac{2}{\sqrt{5}}\right)+2\left(-\frac{2}{\sqrt{5}}\right) \cdot \frac{\sqrt{5}}{5}\right)+\frac{1+\frac{\sqrt{5}}{5}}{2}
\end{aligned}\)
Ví dụ 4: Rút gọn biểu thức lượng giác sau:
\(\begin{aligned}
&\mathrm{A}=4 \sin \frac{\mathrm{x}}{3} \cdot \sin \left(\frac{\mathrm{x}+\pi}{3}\right) \cdot \sin \left(\frac{\mathrm{x}-\pi}{3}\right) \\
&\mathrm{B}=4 \cos \frac{\mathrm{x}}{3} \cdot \cos \left(\frac{\mathrm{x}+\pi}{3}\right) \cdot \cos \left(\frac{\mathrm{x}-\pi}{3}\right)
\end{aligned}\)
Hướng dẫn giải:
\(\begin{aligned}
\mathrm{A} &=4 \sin \frac{x}{3} \cdot \sin \left(\frac{x+\pi}{3}\right) \cdot \sin \left(\frac{x-\pi}{3}\right) \\
&=4 \cdot \sin \frac{x}{3} \cdot \frac{1}{2}\left[\cos \left(\frac{x+\pi}{3}-\frac{x-\pi}{3}\right)-\cos \left(\frac{x+\pi}{3}+\frac{x-\pi}{3}\right)\right] \\
&=2 \sin \frac{x}{3}\left(\cos \frac{2 \pi}{3}-\cos \frac{2 x}{3}\right) \\
&=2 \sin \frac{x}{3}\left(-\frac{1}{2}-\cos \frac{2 x}{3}\right) \\
&=-\frac{1}{2} \cdot 2 \sin \frac{x}{3}-2 \sin \frac{x}{3} \cos \frac{2 x}{3} \\
&=-\sin \frac{x}{3}-2 \cdot \frac{1}{2}\left(\sin \left(\frac{x}{3}-\frac{2 x}{3}\right)+\sin \left(\frac{x}{3}+\frac{2 x}{3}\right)\right)
\end{aligned}\)
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Chủ đề liên quan
Có thể bạn quan tâm
-
Văn mẫu lớp 12: Nghị luận về ý kiến Chi tiết nhỏ làm nên nhà văn lớn (Dàn ý + 4 mẫu)
-
Đoạn văn tiếng Anh viết về lợi ích của việc học Đại học
-
Công thức tính đường cao trong tam giác
-
Bài thu hoạch thăng hạng giáo viên Mầm non hạng II (3 mẫu)
-
Đoạn văn tiếng Anh hướng dẫn để cho trường học bạn xanh hơn
-
Cảm xúc về bài hát Như có Bác trong ngày đại thắng (6 mẫu)
-
Điều lệ Trường Mầm non - Ban hành kèm theo Thông tư số 52/2020/TT-BGDĐT
-
Kể lại truyền thuyết Sơn Tinh, Thủy Tinh bằng lời văn của em (2 Dàn ý + 21 mẫu)
-
Bài thu hoạch những nội dung chính trong công tác xây dựng Đảng ở cơ sở hiện nay
-
Ma trận đề thi học kì 2 lớp 5 năm 2024 - 2025 theo Thông tư 27
Mới nhất trong tuần
-
Công thức tính đường cao trong tam giác
50.000+ -
Tóm tắt kiến thức và phương pháp giải Toán lớp 10
100.000+ -
Biểu đồ tròn: Cách vẽ và bài tập
100.000+ -
Toán Tiểu học: Công thức tính diện tích, chu vi, thể tích hình cơ bản
1M+ 13 -
Trọn bộ công thức Toán cấp 3
10.000+ 1 -
Tổng hợp kiến thức môn Toán lớp 7
100.000+ 9 -
Diện tích lục giác đều: Công thức và cách tính
10.000+ 1 -
Chuyên đề Rút gọn biểu thức chứa căn bậc hai Lớp 9
50.000+ -
Công thức tính phần trăm khối lượng
10.000+ -
Tâm đường tròn nội tiếp tam giác: Lý thuyết & các dạng bài tập
100.000+