Chuyên đề Hệ phương trình ôn thi vào lớp 10 Ôn thi vào lớp 10 môn Toán
Chuyên đề Hệ phương trình ôn thi vào lớp 10 là nguồn tư liệu cực kì hữu ích dành cho các bạn học sinh lớp 9 chuẩn bị thi vào 10 tham khảo.
Tài liệu bao gồm toàn bộ kiến thức về phương pháp giải, các dạng bài tập, ví dụ minh họa kèm theo các bài tập có đáp án và tự luyện. Bài tập được phân dạng đầy đủ có hướng dẫn giải cho từng dạng giúp học sinh tiện trong việc luyện tập. Nhiều bài tập vận dụng, vận dụng cao mang tính phổ quát giúp em rèn luyện tư duy, kỹ năng làm bài. Vậy sau đây là nội dung chi tiết Chuyên đề Hệ phương trình thi vào 10 mời các bạn cùng theo dõi. Bên cạnh đó các bạn xem thêm chuyên đề giải bài Toán bằng cách lập phương trình, hệ phương trình lớp 9.
Chuyên đề Hệ phương trình ôn thi vào lớp 10
A. MỤC TIÊU: Học sinh nắm được
- Khái niệm hệ phương trình bậc nhất hai ẩn: \(\left\{\begin{array}{l}a x+b y=c \\ a^{\prime} x+b^{\prime} y=c^{\prime}\end{array}\right.\)và Cách giải
- Một số dạng toán về hệ phương trình bậc nhất hai ẩn
B. NỘI DUNG:
I: CÁCH GIẢI HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Dạng 1: Giải hệ phương trình có bản và đưa về dạng cơ bản
1.- Vận dụng quy tắc thế và quy tắc cộng đại số để giải các hệ phương trình sau:
- Giải hệ phương trình băng phương pháp thế
\(\left\{\begin{array}{l}3 x-2 y=4 \\ 2 x+y=5\end{array} \Leftrightarrow\left\{\begin{array}{l}3 x-2(5-2 x)=4 \\ y=5-2 x\end{array}\right.\right.\)
\(\Leftrightarrow\left\{\begin{array}{l}3 x-10+4 x=4 \\ y=5-2 x\end{array} \Leftrightarrow\left\{\begin{array}{l}7 x=14 \\ y=5-2 x\end{array}\right.\right.\)
\(\Leftrightarrow\left\{\begin{array}{l}x=2 \\ y=5-2.2\end{array} \Leftrightarrow\left\{\begin{array}{l}x=2 \\ y=1\end{array}\right.\right.\)
Vây hệ phương trình đã cho có nghiêm duy nhất \((\mathrm{x} ; \mathrm{y})=(2 ; 1)\)
- Giải hệ phương trình bằng phương pháp cộng đại số:
\(\left\{\begin{array}{l}3 x-2 y=4 \\ 2 x+y=5\end{array} \Leftrightarrow\left\{\begin{array}{l}3 x-2 y=4 \\ 4 x+2 y=10\end{array} \Leftrightarrow\left\{\begin{array}{l}7 x=14 \\ 2 x+y=5\end{array}\right.\right.\right.\)
\(\Leftrightarrow\left\{\begin{array}{l}x=2 \\ 2.2+y=5\end{array} \Leftrightarrow\left\{\begin{array}{l}x=2 \\ y=1\end{array}\right.\right.\)
Vây hệ phương trình đã cho có nghiệm duy nhất \((\mathrm{x} ; \mathrm{y})=(2 ; 1)\)
Bài 1: giải các hệ phương trình sau:
\(1) \left\{\begin{array}{l}4 x-2 y=3 \\ 6 x-3 y=5\end{array}\right.\)
\(2) \left\{\begin{array}{l}2 x+3 y=5 \\ 4 x+6 y=10\end{array}\right.\)
\(3) \left\{\begin{array}{l}3 x-4 y+2=0 \\ 5 x+2 y=14\end{array}\right.\)
\(4) \left\{\begin{array}{l}2 x+5 y=3 \\ 3 x-2 y=14\end{array}\right.\)
\(5) \left\{\begin{array}{l}x \sqrt{5}-(1+\sqrt{3}) y=1 \\ (1-\sqrt{3}) x+y \sqrt{5}=1\end{array}\right.\)
\(6) \left\{\begin{array}{l}0,2 x+0,1 y=0,3 \\ 3 x+y=5\end{array}\right.\)
\(7) \left\{\begin{array}{l}\frac{x}{y}=\frac{2}{3} \\ x+y-10=0\end{array}\right.\)
Bài 2: Giải các hệ phương trình sau:
\(1) \left\{\begin{array}{l}(3 x+2)(2 y-3)=6 x y \\ (4 x+5)(y-5)=4 x y\end{array}\right.\)
\(2) \left\{\begin{array}{l}2(x+y)+3(x-y)=4 \\ (x+y)+2(x-y)=5\end{array}\right.\)
\(3) \left\{\begin{array}{l}(2 x-3)(2 y+4)=4 x(y-3)+54 \\ (x+1)(3 y-3)=3 y(x+1)-12\end{array}\right.\)
\(4) \left\{\begin{array}{l}\frac{2 y-5 x}{3}+5=\frac{y+27}{4}-2 x \\ \frac{x+1}{3}+y=\frac{6 y-5 x}{7}\end{array}\right.\)
\(5) \left\{\begin{array}{l}\frac{1}{2}(x+2)(y+3)-\frac{1}{2} x y=50 \\ \frac{1}{2} x y-\frac{1}{2}(x-2)(y-2)=32\end{array}\right.\)
\(6) \left\{\begin{array}{l}(x+20)(y-1)=x y \\ (x-10)(y+1)=x y\end{array}\right.\)
Dạng 2. Giải các hệ phương trình sau bằng cách đặt ẩn số phụ
\(1) \left\{\begin{array}{l}\frac{1}{x}+\frac{1}{y}=\frac{1}{12} \\ \frac{8}{x}+\frac{15}{y}=1\end{array}\right.\)
\(2) \left\{\begin{array}{l}\frac{2}{x+2 y}+\frac{1}{y+2 x}=3 \\ \frac{4}{x+2 y}-\frac{3}{y+2 x}=1\end{array}\right.\)
\(3) \left\{\begin{array}{l}\frac{3 x}{x+1}-\frac{2}{y+4}=4 \\ \frac{2 x}{x+1}-\frac{5}{y+4}=9\end{array}\right.\)
\(4) \left\{\begin{array}{l}x^{2}+y^{2}=13 \\ 3 x^{2}-2 y^{2}=-6\end{array}\right.\)
\(5) \left\{\begin{array}{l}3 \sqrt{x}+2 \sqrt{y}=16 \\ 2 \sqrt{x}-3 \sqrt{y}=-11\end{array}\right.\)
\(6) \left\{\begin{array}{l}|x|+4|y|=18 \\ 3|x|+|y|=10\end{array}\right.\)
\(7) \left\{\begin{array}{l}2\left(x^{2}-2 x\right)+\sqrt{y+1}=0 \\ 3\left(x^{2}-2 x\right)-2 \sqrt{y+1}=-7\end{array}\right.\)
\(8) \left\{\begin{array}{l}5|x-1|-3|y+2|=7 \\ 2 \sqrt{4 x^{2}-8 x+4}+5 \sqrt{y^{2}+4 y+4}=13\end{array}\right.\)
Dạng 3. Giải và biện luận hệ phương trình
Phương pháp giải:
Từ một phương trình của hệ tìm y theo x rồi thế vào phương trình thứ hai để được phương trình bậc nhất đối với x
Giả sử phương trình bậc nhất đối với x có dạng: ax = b (1)
Biện luận phương trình (1) ta sẽ có sự biện luận của hệ
i) Nếu a=0: (1) trở thành 0x = b
- Nếu b = 0 thì hệ có vô số nghiệm
- Nếu b≠ 0 thì hệ vô nghiệm
ii) Nếu a ≠ 0 thì \(x=\frac{b}{a}\) Thay vào biểu thức của x ta tìm y, lúc đó hệ phương trình có nghiệm duy nhất.
Ví dụ: Giải và biện luận hệ phương trình: \(\left\{\begin{array}{l}m x-y=2 m(1) \\ 4 x-m y=m+6(2)\end{array}\right.\)
Từ (1)\(\Rightarrow y=m x-2 m\), thay vào (2) ta được:
\(4 x-m(m x-2 m)=m+6 \Leftrightarrow\left(m^2-4\right) x=(2 m+3)(m-2)\)
i) Nếu \(m^2-4 \neq 0\) hay
\(m \neq \pm 2\) thì
\(x=\frac{(2 m+3)(m-2)}{m^2-4}=\frac{2 m+3}{m+2}\)
Khi đó \(\mathrm{y}=-\frac{m}{m+2}\). Hệ có nghiệm duy nhất:
\(\left(\frac{2 m+3}{m+2} ;-\frac{m}{m+2}\right)\)
ii) Nếu \(\mathrm{m}=2\) thì (3) thỏa mãn với mọi x, khi đó
\(\mathrm{y}=\mathrm{mx}-2 \mathrm{~m}=2 \mathrm{x}-4\)
Hệ có vô số nghiệm (x, 2 x-4) với mọi \(x \in R\)
iii) Nếu m=-2 thì (3) trừ thành 0 x=4. Hệ vô nghiệm
Vậy: - Nếu \(m \neq \pm 2\) thì hệ có nghiệm duy nhất:
\((x, y)=\left(\frac{2 m+3}{m+2} ;-\frac{m}{m+2}\right)\)
- Nếu m=2 thì hệ có vô số nghiệm (x, 2 x-4) với mọi \(x \in R\)
- Nếu m=-2 thì hệ vô nghiệm
Bài tập: Giải và biện luận các hệ phương trình sau:
\(1) \left\{\begin{array}{l}m x+y=3 m-1 \\ x+m y=m+1\end{array}\right.\)
\(2) \left\{\begin{array}{l}m x+4 y=10-m \\ x+m y=4\end{array}\right.\)
\(3) \left\{\begin{array}{l}(m-1) x-m y=3 m-1 \\ 2 x-y=m+5\end{array}\right.\)
\(4) \left\{\begin{array}{l}x+m y=3 m \\ m x-y=m^2-2\end{array}\right.\)
\(5) \left\{\begin{array}{l}x-m y=1+m^2 \\ m x+y=1+m^2\end{array}\right.\)
\(6) \left\{\begin{array}{l}2 x-y=3+2 m \\ m x+y=(m+1)^2\end{array}\right.\)
Dạng 4: Xác định giá trị của tham số để hệ số có nghiệm thỏa mãn điều kiện cho trước
Phương pháp giải
- Giải hệ phương trình theo tham số
- Viết \(\mathrm{x}, \mathrm{y}\) của hệ về dạng:
\(\mathrm{n}+\frac{k}{f(m)}\) với
\(\mathrm{n}, \mathrm{k}\) nguyên
- Tìm nghiệm để f(m) là ước của k
...................
Mời các bạn tải File tài liệu để xem thêm nội dung chi tiết
Chọn file cần tải:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

-
Lượng NguyễnThích · Phản hồi · 0 · 05/06/22
Chủ đề liên quan
Có thể bạn quan tâm
-
Công thức tính đường cao trong tam giác
-
Bài thu hoạch thăng hạng giáo viên Mầm non hạng II (3 mẫu)
-
Đoạn văn tiếng Anh hướng dẫn để cho trường học bạn xanh hơn
-
Cảm xúc về bài hát Như có Bác trong ngày đại thắng (6 mẫu)
-
Điều lệ Trường Mầm non - Ban hành kèm theo Thông tư số 52/2020/TT-BGDĐT
-
Kể lại truyền thuyết Sơn Tinh, Thủy Tinh bằng lời văn của em (2 Dàn ý + 21 mẫu)
-
Bài thu hoạch những nội dung chính trong công tác xây dựng Đảng ở cơ sở hiện nay
-
Ma trận đề thi học kì 2 lớp 5 năm 2024 - 2025 theo Thông tư 27
-
Tả cơn mưa rào mùa hạ - 3 Dàn ý & 35 bài văn tả cơn mưa lớp 5
-
Mẫu sáng kiến kinh nghiệm chuẩn - Mẫu sáng kiến kinh nghiệm dành cho giáo viên
Mới nhất trong tuần
-
Đề thi thử vào lớp 10 năm học 2018 – 2019 môn Ngữ Văn (Có đáp án)
100.000+ -
Điểm chuẩn lớp 10 năm 2025 Tuyên Quang
10.000+ 1 -
Điểm chuẩn lớp 10 năm 2025 TP Hồ Chí Minh
5.000+ -
Điểm chuẩn lớp 10 năm 2025 Khánh Hòa
50.000+ 1 -
Điểm chuẩn lớp 10 năm 2025 Hà Nội
50.000+ -
Điểm chuẩn lớp 10 năm 2025 Đồng Tháp
10.000+ -
Điểm chuẩn lớp 10 năm 2025 Quảng Trị
5.000+ -
Điểm chuẩn lớp 10 năm 2025 Cao Bằng
1.000+ -
Điểm chuẩn lớp 10 năm 2025 Hòa Bình
5.000+ -
Điểm chuẩn lớp 10 năm 2025 Sơn La
5.000+