Tìm m để bất phương trình vô nghiệm Điều kiện để bất phương trình vô nghiệm
Tìm m để bất phương trình vô nghiệm là tài liêu vô cùng hữu ích mà Eballsviet.com muốn giới thiệu đến quý thầy cô cùng các em lớp 10 tham khảo.
Tài liệu tổng hợp toàn bộ kiến thức về phương pháp, điều kiện, ví dụ và các dạng bài tập tìm m để phương trình vô nghiệm. Qua đó giúp các em học sinh nhanh chóng nắm vững kiến thức để giải nhanh các bài Toán 10. Bên cạnh đó các bạn tham khảo thêm Công thức tính độ dài đường trung tuyến.
Tìm m để bất phương trình vô nghiệm
I. Điều kiện để bất phương trình vô nghiệm
Cho hàm số \(f\left( x \right)=a{{x}^{2}}+bx+c:\)
\(f(x)<0\) vô nghiệm với
\(\forall x\in \mathbb{R}\Leftrightarrow f(x)\ge 0\) có nghiệm với
\(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix}
a=0 \\
\left\{ \begin{matrix}
a>0 \\
\Delta \le 0 \\
\end{matrix} \right. \\
\end{matrix} \right.\)
\(f(x)>0\) vô nghiệm với
\(\forall x\in \mathbb{R}\Leftrightarrow f(x)\le 0\) có nghiệm với
\(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix}
a=0 \\
\left\{ \begin{matrix}
a<0 \\
\Delta \le 0 \\
\end{matrix} \right. \\
\end{matrix} \right.\)
\(f(x)\le 0\) vô nghiệm với
\(\forall x\in \mathbb{R}\Leftrightarrow f(x)>0\) có nghiệm với
\(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix}
a=0 \\
\left\{ \begin{matrix}
a>0 \\
\Delta <0 \\
\end{matrix} \right. \\
\end{matrix} \right.\)
\(f(x)\ge 0\) vô nghiệm với
\(\forall x\in \mathbb{R}\Leftrightarrow f(x)<0\) có nghiệm với
\(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix}
a=0 \\
\left\{ \begin{matrix}
a<0 \\
\Delta <0 \\
\end{matrix} \right. \\
\end{matrix} \right.\)
II. Ví dụ tìm m để bất phương trình vô nghiệm
Ví dụ 1. Tìm m để bất phương trình \(x^{2}-2 m x+4 m-3 \leq 0\) vô nghiệm.
\(A.m \in(1 ;+\infty)
\begin{array}{ll}\text { B. } m \in(-\infty ; 1) \cup(3 ;+\infty) . & \text { C.m } \in[1 ; 3] \text {. }\end{array}\)
\(D. m \in(1 ; 3).\)
Lời giải :
Bất phương trình đã cho vô nghiệm khi
\(x^{2}-2 m x+4 m-3>0, \forall x \in \mathbb{R}\)
\(\Leftrightarrow\left\{\begin{array}{l}a=1>0 \text { (luôn đúng) } \\ \triangle^{\prime}=m^{2}-1(4 m-
3)<0\end{array}\right.\)
\(\Leftrightarrow m^{2}-4 m+3<0\)
⇒1<m<3.
Chọn D.
Ví dụ 2. Tìm m để bất phương trình \((m-1) x^{2}-2(m-2) x+3 m-4 \geq 0\) vô nghiệm.
A.\(m \in(0 ; 1) . \quad\)
B. \(m \in(1 ;+\infty).\)
C.\(m \in(-\infty ; 0).\)
D. \(m \in(-\infty ; 1).\)
Lời giải :
Vì hệ số của \(x^{2}\) còn phụ thuộc m nên ta xét hai trường hợp sau :
+ Trường hợp 1: \(m-1=0 \Leftrightarrow m=1\) bất phương trình đã cho trở thành
\(2 x-1 \geq 0 \Leftrightarrow x \geq \frac{1}{2}.\) Vậy bất phương trình có nghiệm
\(x \geq \frac{1}{2}\). Do đó m=1 không tỏa mãn yêu cầu bài toán.
\(\begin{aligned}
&\text { + Trường hợp 2: } m-1 \neq 0 \Leftrightarrow m \neq 1 \text {.Bất phương trình đã cho vô nghiệm khi }\\
&(m-1) x^{2}-2(m-2) x+3 m-4<0, \forall x \in \mathbb{R}\\
&\Leftrightarrow\left\{\begin{array}{l}
a=m-1<0 \\
\Delta^{\prime}=(m-2)^{2}-(m-1)(3 m-4)<0
\end{array}\right.\\
&\Leftrightarrow\left\{\begin{array}{l}
m<1 \\
m^{2}-4 m+4-3 m^{2}+4 m+3 m-4<0
\end{array}\right.\\
&\Leftrightarrow\left\{\begin{array}{l}
m<1 \\
-3 m^{2}+3 m<0
\end{array}\right.\\
&\Leftrightarrow\left\{\begin{array}{l}
m<1 \\
m \in(-\infty ; 0) \cup(1 ;+\infty)
\end{array} \Leftrightarrow m \in(-\infty ; 0) .\right. \text { Chọn C. }
\end{aligned}\)
Ví dụ 3: Tìm m để BPT \(\left( m+2 \right){{x}^{2}}+\left( m+3 \right)x-m>0\) vô nghiệm với mọi
\(x\in \mathbb{R}\)
Lời giải
TH1: \(m+2=0\Leftrightarrow m=-2
\Leftrightarrow -x+2>0\)
Vậy m = -2 thì bất phương trình có nghiệm
TH2: \(m+2\ne 0\Leftrightarrow m\ne -2\)
Để bất phương trình \(f(x)>0\) vô nghiệm
\(x\in \mathbb{R}\) thì
\(f(x)\le 0\) có nghiệm với
\(x\in \mathbb{R}\)
\(\Leftrightarrow \left\{ \begin{matrix}
a<0 \\
\Delta \le 0 \\
\end{matrix} \right.
\Rightarrow \left\{ \begin{matrix}
m+2<0 \\
{{(m+3)}^{2}}+4\left( m+2 \right)\le 0 \\
\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}
m<-2 \\
5{{m}^{2}}+14m+9\le 0 \\
\end{matrix} \right.\)
\(\Leftrightarrow \left\{ \begin{matrix}
m <-2 \\
m\in [\dfrac{-9}{5};-1] \\
\end{matrix}\right.\)
Vậy không có giá trị nào của m để bất phương trình vô nghiệm
Ví dụ 4: Cho bất phương trình \(m{{x}^{2}}-{{m}^{2}}-mx+4>0\). Tìm m để bất phương trình vô nghiệm
\(\forall x\in \mathbb{R}\)
Lời giải
TH1: \(m=0\Leftrightarrow 4>0\) (loại)
TH2: \(m\ne 0\)
Để bất phương trình \(f(x)>0\) vô nghiệm
\(x\in \mathbb{R}\) thì
\(f(x)\le 0\) có nghiệm với mọi
\(x\in \mathbb{R}\)
\(\Leftrightarrow \left\{ \begin{matrix}
a<0 \\
\Delta \le 0 \\
\end{matrix} \right.
\Rightarrow\left\{ \begin{matrix}
m<0 \\
\Delta \le 0 \\
\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}
m<0 \\
{{m}^{2}}-4m\left( 4-{{m}^{2}} \right)\le 0 \\
\end{matrix}\Leftrightarrow m\in (-\infty ,\frac{-1-\sqrt{257}}{8}] \right.$\)
Vậy BPT vô nghiệm khi \(m\in (-\infty ,\frac{-1-\sqrt{257}}{8}]\)
Ví dụ 5: Cho bất phương trình \(m{{x}^{2}}-2\left( m+1 \right)x+m+7\le 0\). Tìm m để bất phương trình vô nghiệm
\(\forall x\in \mathbb{R}\)
Lời giải
TH1: \(m=0\Leftrightarrow 7\le 0\) (loại)
TH2: \(m\ne 0\)
Để bất phương trình \(f(x)\le 0\) vô nghiệm
\(x\in \mathbb{R}\) thì
\(f(x)>0\) có nghiệm với mọi
\(x\in \mathbb{R}\)
\(\Leftrightarrow \left\{ \begin{matrix}
a>0 \\
\Delta <0 \\
\end{matrix} \right.\)
\(\left\{ \begin{matrix}
m>0 \\
\Delta '<0 \\
\end{matrix} \right.\)
\(\Leftrightarrow \left\{ \begin{matrix}
m<0 \\
{{\left( m+1 \right)}^{2}}-m\left( m+7 \right)<0 \\
\end{matrix}\Leftrightarrow \left\{ \begin{matrix}
m<0 \\
-5m+1<0 \\
\end{matrix} \right. \right.\)(vô lí)
Vậy không có giá trị nào của m để bất phương trình vô nghiệm.
III. Bài tập tìm m để bất phương trình vô nghiệm
Bài 1: Cho bất phương trình: (m + 1)x2 - (2m + 1)x + m - 2 = 0. Tìm giá trị của m để phương trình vô nghiệm.
Bài 2: Tìm m để bất phương trình sau: mx2 - 2(m + 1) + m + 7 < 0 vô nghiệm.
Bài 3: Cho bất phương trình: x2 + 6x + 7 + m ≤ 0. Tìm m để bất phương trình vô nghiệm
Bài 4: Tìm tất cả các giá trị của m để bất phương trình (m2 - x)x + 3 < 6x - 2 vô nghiệm.
Bài 5: Tìm tát cả các giá trị của m để bất phương trình (4m2 + 2m + 1) - 5m ≥ 3x - m - 1 có tập nghiệm thuộc [ -1; 1]
Bài 6: Cho bất phương trình: x2 + 2(m + 1)x + 9m - 5 < 0. Tìm các giá trị thực của m để bất phương trình vô nghiệm.
Bài 7: Tìm tham số m để bất phương trình |x - 2| - m + 9 ≤ 0 vô nghiệm.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Chủ đề liên quan
Có thể bạn quan tâm
-
Giáo án Tiếng Việt 4 năm 2023 - 2024 (Sách mới)
-
Bộ đề thi học kì 1 môn Toán, Tiếng Việt lớp 4 theo Thông tư 27
-
Sáng kiến kinh nghiệm: Một số biện pháp giáo dục lễ giáo cho trẻ Mầm non 5 - 6 tuổi
-
Bộ công thức Toán ôn thi THPT Quốc gia
-
Công thức tính lực đàn hồi của lò xo, định luật Húc
-
Văn mẫu lớp 12: Viết đoạn văn trả lời câu hỏi Sự ngông nghênh của tuổi trẻ khiến con người dễ bỏ lỡ những điều gì
-
Nghị luận về tình trạng học lệch, ôn thi lệch của học sinh hiện nay
-
35 đề ôn thi học kì 2 môn Tiếng Việt lớp 5 năm 2023 - 2024
-
Bài tập cuối tuần lớp 3 môn Toán Kết nối tri thức - Tuần 28
-
Bộ đề ôn thi học kì 2 môn Tiếng Anh 6 sách Kết nối tri thức với cuộc sống
Mới nhất trong tuần
-
Phân tích tác phẩm Giàn bầu trước ngõ của Nguyễn Ngọc Tư
5.000+ 1 -
Phân tích nhân vật mẹ Lê trong Nhà mẹ Lê
1.000+ -
Phân tích tác phẩm Bà lão lòa của Vũ Trọng Phụng (2 Mẫu)
1.000+ -
Dàn ý nghị luận về ứng xử trên không gian mạng (6 Mẫu)
10.000+ -
Viết bài luận về bản thân (Dàn ý + 4 Mẫu)
10.000+ 1 -
Phân tích tác phẩm Một bữa no (2 Mẫu)
10.000+ -
Phân tích bài thơ Xuân về (Dàn ý + 8 Mẫu)
100.000+ -
Phân tích nhân vật bé Em trong truyện Áo Tết
1.000+ 1 -
Công thức tính lực đàn hồi của lò xo, định luật Húc
10.000+ -
Dàn ý bài Đất nước của Nguyễn Đình Thi (6 mẫu)
10.000+