Tuyển tập 936 bài tập trắc nghiệm số phức Ôn thi THPT Quốc gia môn Toán
TOP 936 bài tập trắc nghiệm số phức là tài liệu vô cùng hữu ích mà Eballsviet.com muốn giới thiệu đến quý thầy cô cùng các bạn học sinh lớp 12 tham khảo.
Trắc nghiệm số phức gồm 265 trang tổng hợp các dạng bài tập trắc nghiệm thường xuất hiện trong các đề thi THPT Quốc gia qua các năm có đáp án kèm theo gồm 253 câu hỏi số phức và các phép toán, 256 câu phương trình và các bài tập tìm số phức thỏa mãn điều kiện, 227 câu biểu diễn hình học của số phức, tìm tập hợp điểm. Hi vọng qua tài liệu này giúp các bạn lớp 12 học tập chủ động, nâng cao kiến thức để đạt kết quả cao trong kì thi THPT Quốc gia sắp tới. Bên cạnh đó các bạn xem thêm: Bài tập phương trình phức, Bài tập thể tích khối chóp có một cạnh bên vuông góc với đáy, 572 câu trắc nghiệm chuyên đề Hàm số nâng cao.
TOP 936 bài tập trắc nghiệm số phức
I. Khái niệm số phức là gì?
- Số phức là trường hợp tổng quát hơn của số thực. Số thực là 1 trường hợp cụ thể của số phức (khi b = 0).
- Số phức có dạng: z = a + bi, (a, b ∈ \(\mathbb{R}\)), i2 = -1 trong đó a là phần thức, b là phần ảo
- Tập các số phức là tập \(\mathbb{C}\Rightarrow \mathbb{R}\subset \mathbb{C}\)
Hai số phức bằng nhau: Hai số phức z = a + bi, w = c + di bằng nhau khi: \(\left\{ \begin{matrix}
a=c \\
b=d \\
\end{matrix} \right.\)
Số phức liên hợp
\(z=a+bi\Rightarrow \bar{z} =a-bi\)
Biểu diễn số phức
z = a + bi là điểm M(a, b) trên mặt phẳng tọa độ
Mô đun của số phức
\(\left| z \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}\)
2. Công thức cộng trừ số phức cần nhớ
- Cho hai số phức z = a + bi, w = c + di, (a, b, c, d ∈ R), i2 = -1 ta có:
Phép cộng số phức: z + w = (a + c) + (b + d)i
Phép trừ số phức: z - w = (a - c) + (b - d)i
3. Công thức nhân chia số phức
Phép nhân số phức z.w = (ac - bd) + (ad + bc)i
Phép chia số phức
\(\frac{w}{z}=\frac{c+di}{a+bi}=\frac{\left( c+di \right)\left( a-bi \right)}{{{a}^{2}}+{{b}^{2}}}=\frac{ac+bd}{{{a}^{2}}+{{b}^{2}}}+\frac{ad-bc}{{{a}^{2}}+{{b}^{2}}}.i,\left( a+bi\ne 0 \right)\)
Tính chất cần nhớ
- Cho số phức z = a + bi, (a, b ∈ R), i2 = -1
\(z=\overline{z}\Leftrightarrow\) Số phức z là số thực
\(z=-\overline{z}\Leftrightarrow\) Số phức x là số thuần ảo
- Cho hai số phức z1 = a + bi, z2 = c + di, (a, b, c, d ∈ R) ta có:
\(\overline{{{z}_{1}}+{{z}_{2}}}=\overline{{{z}_{1}}}+\overline{{{z}_{2}}}\)
\(\overline{{{z}_{1}}.{{z}_{2}}}=\overline{{{z}_{1}}}.\overline{{{z}_{2}}}\)
\(\overline{\frac{{{z}_{1}}}{{{z}_{2}}}}=\frac{\overline{{{z}_{1}}}}{\overline{{{z}_{2}}}},\overline{{{z}_{2}}}\ne 0\)
\(\left| {{z}_{1}}.{{z}_{2}} \right|=\left| {{z}_{1}} \right|.\left| {{z}_{2}} \right|\)
\(\left| \frac{{{z}_{1}}}{{{z}_{2}}} \right|=\frac{\left| {{z}_{1}} \right|}{\left| {{z}_{2}} \right|},{{z}_{2}}\ne 0\)
\(\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\)
4. Căn bậc hai của một số phức
Cho số phức z = a + bi. Tìm căn bậc hai của một số phức
- Nếu z = 0 ⇒ z có căn bậc hai là: 0
- Nếu z = a > 0 ⇒ z có căn bậc hai là: \(\sqrt{a},-\sqrt{a}\)
- Nếu z = a < 0 ⇒ z có căn bậc hai là: \(i\sqrt{-a},-i\sqrt{a}\)
Nếu z = a + bi, b ≠ 0. Giả sử w = x + yi, y ∈ R là một căn bậc hai của số phức z ta có:
w2 = z ⇔ (x + yi)2 = a + bi
\(\Rightarrow \left\{ {\begin{array}{*{20}{c}}
{{x^2} - {y^2} = a} \\
{2xy = b}
\end{array}} \right.\)
Giải hệ phương trình trên mỗi cặp (x; y) thu được cho ta một căn bậc hai của z.
5. Bất đẳng thức số phức
\(\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\) dấu bằng xảy ra khi và chỉ khi z1 = k.z2, k ≥ 0
\(\left| {{z}_{1}}-{{z}_{2}} \right|\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\) dấu bằng xảy ra khi và chỉ khi z1 = k.z2, k ≤ 0
\(\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right| \right|\) dấu bằng xảy ra khi và chỉ khi z1 = k.z2, k ≤ 0
\(\left| {{z}_{1}}-{{z}_{2}} \right|\le \left| \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right| \right|\) dấu bằng xảy ra khi và chỉ khi z1 = k.z2, k ≥ 0
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Chủ đề liên quan
Có thể bạn quan tâm
-
Giáo án Tiếng Việt 4 năm 2023 - 2024 (Sách mới)
-
Bộ đề thi học kì 1 môn Toán, Tiếng Việt lớp 4 theo Thông tư 27
-
Sáng kiến kinh nghiệm: Một số biện pháp giáo dục lễ giáo cho trẻ Mầm non 5 - 6 tuổi
-
Bộ công thức Toán ôn thi THPT Quốc gia
-
Công thức tính lực đàn hồi của lò xo, định luật Húc
-
Văn mẫu lớp 12: Viết đoạn văn trả lời câu hỏi Sự ngông nghênh của tuổi trẻ khiến con người dễ bỏ lỡ những điều gì
-
Nghị luận về tình trạng học lệch, ôn thi lệch của học sinh hiện nay
-
35 đề ôn thi học kì 2 môn Tiếng Việt lớp 5 năm 2023 - 2024
-
Bài tập cuối tuần lớp 3 môn Toán Kết nối tri thức - Tuần 28
-
Bộ đề ôn thi học kì 2 môn Tiếng Anh 6 sách Kết nối tri thức với cuộc sống
Mới nhất trong tuần
-
Đề thi thử THPT Quốc gia năm 2025 môn Địa lí sở GD&ĐT Đà Nẵng
5.000+ -
Đề thi thử THPT Quốc gia năm 2025 môn Địa lí Sở GD&ĐT Quảng Nam
100+ -
Bộ công thức Toán ôn thi THPT Quốc gia
10.000+ -
Đề thi thử THPT Quốc gia năm 2025 môn Toán sở GD&ĐT Quảng Nam
1.000+ -
Đề thi thử THPT Quốc gia năm 2025 môn Toán trường THPT Ngô Gia Tự, Phú Yên
1.000+ -
Đề thi thử THPT Quốc gia năm 2025 môn Toán sở GD&ĐT Hưng Yên
1.000+ -
Đề thi thử THPT Quốc gia năm 2025 môn Toán trường THPT Trần Quốc Tuấn, Phú Yên
1.000+ -
Đề thi thử THPT Quốc gia năm 2025 môn Toán trường THPT Bảo Thắng 1, Lào Cai
100+ -
Đề thi thử THPT Quốc gia năm 2025 môn Toán sở GD&ĐT Sóc Trăng
100+ -
Đề thi thử THPT Quốc gia năm 2025 môn Toán trường THPT Mộ Đức, Quãng Ngãi
1.000+