Ôn thi Đại học môn Toán - Chuyên đề: Bất đẳng thức Luyện thi môn Toán

ÔN THI ĐẠI HỌC MÔN TOÁN CHUYÊN ĐỀ: BẤT ĐẲNG THỨC

A. PHƯƠNG PHÁP GIẢI

I. Một số ghi nhớ

* a2 ≥ 0, (a ± )2 ≥ 4ab; với mọi a, b

* a2 ± ab + b2 > 0, với mọi a, b

* |a| ≥ ± a, vơi mọi a

* |a + b| ≤ |a| + |b|; với mọi a, b

* |a - b| ≥ |a| - |b|; với mọi a, b

* - 1 ≤ sinx ≤ 1; -1 ≤ cosx ≤ 1

II. Bất đẳng thức Cauchy

Cho hai số a, b, không âm

1. Ta có: a + b ≥ 2√a.b; dấu "=" xảy ra khi a = b

2. Nếu a + b = const thì tích a.b lớn nhất khi a = b

3. Nếu a.b = const thì tổng a + b nhỏ nhất khi a = b

B. ĐỀ THI

Bài 1: Đại học khối A năm 2011

Cho x, y, z là ba số thực thuộc đoạn [1; 4] và x ≥ y, x ≥ z;

Tìm giá trị nhỏ nhất của biểu thức:

Giải:

Cách 1:

Ôn thi Đại học môn Toán - Chuyên đề: Bất đẳng thức

Cách 2:

Ôn thi Đại học môn Toán - Chuyên đề: Bất đẳng thức

Cách 3: Ôn thi Đại học môn Toán - Chuyên đề: Bất đẳng thức

Download tài liệu để xem chi tiết.

Liên kết tải về
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
👨
Xem thêm
Đóng
Chỉ thành viên Download Pro tải được nội dung này! Download Pro - Tải nhanh, website không quảng cáo! Tìm hiểu thêm