Đề thi thử đại học môn Toán năm 2014 tỉnh Bắc Giang Có đáp án
SỞ GIÁO DỤC VÀ ĐÀO TẠO
|
ĐỀTHI THỬ ĐẠI HỌC LẦN 1 NĂM HỌC 2013-2014
|
I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)
Câu 1 (2 điểm):
Cho hàm số y = 2x3 - 3(2m + 1)x2 + 6m(m + 1)x + 1 có đồ thị (1)
a. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 0.
b. Tìm m để đồ thị hàm số (1) đồng biến trên khoảng (2; +∞).
Câu 2 (1 điểm) Giải phương trình sau:
Câu 3 (1 điểm) Giải phương trình sau:
Câu 4 (1 điểm) Tìm m để hệ phương trình sau có 3 cặp nghiệm thực phân biệt:
Câu 5 (1 điểm)
Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật, SA vuông góc với đáy, G là trọng tâm tam giác SAC, mặt phẳng (ABG) cắt SC tại M, cắt SD tại N. Tính thể tích của khối đa diện MNABCD biết SA = SB = a và góc hợp bởi đường thẳng AN và mặt phẳng (ABCD) bằng 30o.
Câu 6 (1 điểm)
Cho x, y, z thỏa mãn là các số thực: x2 - xy + y2 = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
II. PHẦN RIÊNG (3 điểm): Thí sinh chỉ được làm một trong hai phần (Phần A hoặc phần B)
A. Theo chương trình chuẩn.
Câu 7a (1 điểm): Trong mặt phẳng Oxy, cho tam giác ABC với AB = √5, C(-1; -1), đường thẳng AB có phương trình: x + 2y - 3 = 0 và trọng tâm tam giác ABC thuộc đường thẳng d: x + y - 2 = 0. Tìm tọa độ đỉnh A và B.
Câu 8a (1 điểm): Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 - 4x - 4y + 4 = 0 và đường thẳng d có phương trình: x + y - 2 = 0. Chứng minh rằng d luôn cắt (C) tại hai điểm phân biệt A và B. Tìm tọa độ điểm M trên đường tròn (C) sao cho diện tích tam giác MAB lớn nhất.
Câu 9a (1 điểm): Cho khai triển:
. Tính a4.
B. Theo chương trình nâng cao
Câu 7b (1 điểm): Trong mặt phẳng Oxy, cho tam giác ABC biết B(2; -1), đường cao và đường phân giác trong qua đỉnh A và C lần lượt có phương trình: 3x - 4y + 27 = 0 và x + 2y - 5 = 0. Viết phương trình các cạnh của tam giác ABC.
Câu 8b (1 điểm): Trong mặt phẳng Oxy, viết phương trình chính tắc của Elip (E), biết rằng tâm sai của E bằng và hình chữ nhật cơ sở có diện tích bằng 24.
Câu 9b (1 điểm): Một hộp đựng 15 viên bi, trong đó có 7 viên bi xanh và 8 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi (không kể thứ tự ra khỏi hộp). Tính xác xuất để trong 3 viên bi lấy ra có ít nhất 1 viên bi đỏ.
Download tài liệu để xem chi tiết.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Chủ đề liên quan
Có thể bạn quan tâm
-
Giáo án Tiếng Việt 4 năm 2023 - 2024 (Sách mới)
-
Bộ đề thi học kì 1 môn Toán, Tiếng Việt lớp 4 theo Thông tư 27
-
Sáng kiến kinh nghiệm: Một số biện pháp giáo dục lễ giáo cho trẻ Mầm non 5 - 6 tuổi
-
Bộ công thức Toán ôn thi THPT Quốc gia
-
Công thức tính lực đàn hồi của lò xo, định luật Húc
-
Văn mẫu lớp 12: Viết đoạn văn trả lời câu hỏi Sự ngông nghênh của tuổi trẻ khiến con người dễ bỏ lỡ những điều gì
-
Nghị luận về tình trạng học lệch, ôn thi lệch của học sinh hiện nay
-
35 đề ôn thi học kì 2 môn Tiếng Việt lớp 5 năm 2023 - 2024
-
Bài tập cuối tuần lớp 3 môn Toán Kết nối tri thức - Tuần 28
-
Bộ đề ôn thi học kì 2 môn Tiếng Anh 6 sách Kết nối tri thức với cuộc sống
Mới nhất trong tuần
-
Sơ đồ tư duy lý thuyết môn Sinh học
10.000+ -
Nguyên lý thống kê
10.000+ -
Toán rời rạc
10.000+ -
Đề thi thử THPT Quốc gia năm 2025 môn Hóa học trường THPT Trần Đại Nghĩa
100+ -
Đề thi thử THPT Quốc gia năm 2025 môn Toán trường THPT Trần Đại Nghĩa, Đồng Nai
100+ -
Giáo Trình Giải Tích
10.000+ -
Bộ câu hỏi trắc nghiệm Mác - Lênin
10.000+ -
300 Câu hỏi trắc nghiệm môn Lý Luận Chính Trị
10.000+ -
Đề thi và đáp án môn Vật Lý khối A
50.000+ -
Đề thi thử THPT Quốc gia năm 2017 môn Ngữ văn trường THPT Đoàn Thượng, Hải Dương (Lần 1)
50.000+