Các phương pháp giải Toán hình học không gian
GIẢI TOÁN HÌNH HỌC KHÔNG GIAN
Thầy: Lâm Tấn Dũng
Mở đầu
Hình học không gian là môn học khó đối với nhiều học sinh, nhưng nếu biết đưa ra phương pháp giải cho từng dạng toán, kiên trì hướng dẫn học sinh thực hiện theo đúng phương pháp đó, thì việc học và giải toán hình học không gian sẽ đỡ khó hơn rất nhiều và mỗi học sinh đều có thể học và giải những đề thi đại học phần hình học không gian một cách nhẹ nhàng.
Một số phương pháp giải toán Hình Học Không Gian
BÀI TOÁN 1: Tìm giao tuyến của hai mặt phẳng.
* Phương pháp:
Cách 1: Tìm 2 điểm chung của 2 mặt phẳng đó.
- Điểm chung thứ nhất thường dễ thấy.
- Điểm chung thứ hai là giao điểm của 2 đường thẳng còn lại, không qua điểm chung thứ nhất.
Cách 2: Nếu trong 2 mặt phẳng có chứa 2 đường thẳng // thì chỉ cần tìm 1 điểm chung, khi đó giao tuyến sẽ đi qua điểm chung và // với 2 đường thẳng này
BÀI TOÁN 2: Tìm giao điểm của đường thẳng a và mặt phẳng (P)
* Phương pháp:
- Ta tìm giao điểm của a với một đường thẳng b nào đó nằm trong (P).
- Khi không thấy đường thẳng b, ta thực hiện theo các bước sau:
1. Tìm một mp (Q) chứa a.
2. Tìm giao tuyến b của (P) và (Q).
3. Gọi: A = a ∩ b thì: A = a ∩ (P).
BÀI TOÁN 3: Chứng minh 3 điểm thẳng hàng.
* Phương pháp:
Để chứng minh 3 điểm hay nhiều hơn 3 điểm thẳng hàng ta chứng minh các điểm ấy thuộc 2 mặt phẳng phân biệt.
BÀI TOÁN 4: Chứng minh 3 đường thẳng a, b, c đồng quy.
* Phương pháp:
- Cách 1: Ta chứng minh giao điểm của 2 đường thẳng này là điểm chung của 2 mp mà giao tuyến là đường thẳng thứ ba.
Tìm A = a ∩ b.
Tìm 2 mp (P), (Q), chứa A mà (P) ∩ (Q) = c.
- Cách 2: Ta chứng minh: a, b, c không đồng phẳng và cắt nhau từng đôi một.
BÀI TOÁN 5: Tìm tập hợp giao điểm M của 2 đường thẳng di động a, b.
* Phương pháp:
- Tìm mp (P) cố định chứa a.
- Tìm mp (Q) cố định chứa b.
- Tìm c = (P) ∩ (Q). Ta có M thuộc c.
- Giới hạn.
BÀI TOÁN 6: Dựng thiết diện của mp(P) và một khối đa diện T.
* Phương pháp:
Muốn tìm thiết diện của mp(P) và khối đa diện T, ta đi tìm đoạn giao tuyến của mp(P) với các mặt của T. Để tìm giao tuyến của (P) với các mặt của T, ta thực hiện theo các bước:
1. Từ các điểm chung có sẵn, xác định giao tuyến đầu tiên của (P) với một mặt của T.
2. Kéo dài giao tuyến đã có, tìm giao điểm với các cạnh của mặt này từ đó làm tương tự ta tìm được các giao tuyến còn lại, cho tới khi các đoạn giao tuyến khép kín ta sẽ có thiết diện cần dựng.
Download tài liệu để xem chi tiết.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Chủ đề liên quan
Có thể bạn quan tâm
-
Tìm nghiệm của đa thức - Cách tìm nghiệm của đa thức
-
Bộ đề thi học kì 2 môn tiếng Anh lớp 10 năm 2024 - 2025 (Sách mới)
-
Văn mẫu lớp 6: Tả lại hình ảnh của bố hoặc mẹ khi em mắc lỗi
-
Tả cánh đồng quê em - 3 Dàn ý & 48 bài văn tả cánh đồng lớp 5
-
Bộ đề thi học kì 2 môn Giáo dục địa phương lớp 8 năm 2024 - 2025
-
Văn mẫu lớp 11: Dàn ý 13 câu đầu bài Vội vàng (6 Mẫu)
-
Dàn ý thuyết minh về một tác phẩm văn học
-
Dẫn chứng về lòng khoan dung - Ví dụ về lòng khoan dung trong cuộc sống
-
Bộ đề thi học kì 2 môn Tiếng Anh lớp 1 năm 2024 - 2025 sách Kết nối tri thức với cuộc sống
-
Bài tập rèn luyện kỹ năng viết chính tả cho học sinh lớp 1
Mới nhất trong tuần
-
Văn mẫu lớp 12: So sánh hình tượng sông Đà và sông Hương
100.000+ -
Trắc nghiệm về Thì Hiện tại đơn và Hiện tại tiếp diễn
10.000+ -
Đề thi đại học môn Tiếng Anh khối A1
10.000+ -
Đề thi Đại học môn Tiếng Anh khối D
10.000+ -
Đề thi thử THPT Quốc gia năm 2025 môn Toán trường THPT chuyên Hà Nội Amsterdam
1.000+ -
Đề thi thử THPT Quốc gia 2018 môn Tiếng Anh trường THPT Chuyên Bắc Ninh - Lần 1 (Có đáp án)
10.000+ -
Tuyển tập những bài văn hay ôn thi THPT Quốc gia 2023
10.000+ -
Đề thi thử THPT Quốc gia năm 2025 môn Toán trường THPT Chuyên Hùng Vương, Phú Thọ
1.000+ -
Đề minh họa môn Lịch sử kỳ thi độc lập tuyển sinh Trường ĐHSP Hà Nội 2 năm 2025
100+ -
Đề minh họa môn Ngữ văn kỳ thi độc lập tuyển sinh Trường ĐHSP Hà Nội 2 năm 2025
100+